Thực hiện phép tính:
\(A=\left(\dfrac{am}{b}\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}\right).a^2.b^2.\sqrt{\dfrac{n}{m}}\)
Thực hiện phép tính.
a) \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\sqrt{\dfrac{1}{ab}}}\right)\sqrt{ab}\)
b) \(\left(\dfrac{am}{b}\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}\right).a^2b^2.\sqrt{\dfrac{n}{m}}\)
Giải chi tiết ra hộ mình với ạ, mình cảm ơn ạ.
Thực hiện phép tính:
a) \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\sqrt{\dfrac{1}{ab}}}\right)\cdot\sqrt{ab}\)
b) \(\left(\dfrac{am}{b}\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}\right)\cdot a^2b^2\cdot\sqrt{\dfrac{n}{m}}\)
a: \(=ab+2\cdot\sqrt{\dfrac{b}{a}\cdot ab}-\sqrt{ab\cdot\left(\dfrac{a}{b}+\dfrac{1}{\sqrt{ab}}\right)}\)
\(=ab+2b-\sqrt{ab\cdot\dfrac{a\sqrt{a}+\sqrt{b}}{b\sqrt{a}}}\)
\(=ab+2b-\sqrt{\sqrt{a}\cdot\left(a\sqrt{a}+\sqrt{b}\right)}\)
b: \(=\left(\sqrt{\dfrac{a^2m^2\cdot n}{b^2\cdot m}}-\sqrt{mn\cdot\dfrac{a^2b^2}{n^2}}+\sqrt{\dfrac{a^4}{b^4}\cdot\dfrac{m}{n}}\right)\cdot a^2b^2\cdot\sqrt{\dfrac{n}{m}}\)
\(=\left(\dfrac{a\sqrt{mn}}{b}-\sqrt{a^2b^2\cdot\dfrac{m}{n}}+\dfrac{a^2}{b^2}\cdot\sqrt{\dfrac{m}{n}}\right)\cdot\sqrt{\dfrac{n}{m}}\cdot a^2b^2\)
\(=\left(\dfrac{an}{b}-ab+\dfrac{a^2}{b^2}\right)\cdot a^2b^2\)
\(=a^3nb-a^3b^3+a^4\)
Thực hiện phép tính
\(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\sqrt{\dfrac{1}{ab}}}\right).\sqrt{ab}\)
Lời giải:
\(=\sqrt{ab}.\sqrt{ab}+2.\sqrt{\frac{b}{a}}.\sqrt{ab}-\sqrt{\frac{a}{b}+\sqrt{\frac{1}{ab}}}.\sqrt{ab}\)
\(=ab+2\sqrt{b^2}-\sqrt{(\frac{a}{b}+\sqrt{\frac{1}{ab}}).ab}=ab+2|b|+\sqrt{a^2+\sqrt{ab}}\)
Thực hiện các phép tính sau :
a. \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
b. \(\left(a^2b-3ab^2\right):\left(\dfrac{1}{2}ab\right)+\left(6b^3-5ab^2\right):b^2\)
Thực hiện các phép tính sau :
a. \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
b. \(\left(a^2b-3ab^2\right):\left(\dfrac{1}{2}ab\right)+\left(6b^3-5ab^2\right):b^2\)
\(a,=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\\ b,=2a-6b+6b-5a=-3a\)
câu a \(\dfrac{\sqrt{m^3}+4\sqrt{mn^2}-4\sqrt{m^2n}}{\sqrt{m^2n}-2\sqrt{mn^2}}\left(m>0,n>0\right)\) câu b \(\dfrac{x\sqrt{x}-1}{x-1}\left(x>0\right)\) câu c \(\sqrt{50x^3y^5}-\dfrac{2y^2}{x^2}\sqrt{32x^7y}+\dfrac{3xy}{2}\sqrt{2xy^2}\)\(\left(x>0,y>0\right)\) câu d \(\left(x+2\right)\sqrt{\dfrac{2x-3}{x+2}}\) câu e \(\dfrac{a+b}{a}\times\sqrt{\dfrac{ab^2+ab^3}{a^2+2ab+b^2}}\left(a>0,b>-1\right)\)
a: \(=\dfrac{\sqrt{m}\left(m+4n-4\sqrt{mn}\right)}{\sqrt{mn}\left(\sqrt{m}-2\sqrt{n}\right)}\)
\(=\dfrac{1}{\sqrt{n}}\cdot\left(\sqrt{m}-2\sqrt{n}\right)\)
b: \(=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
c: \(=\sqrt{5^2\cdot2\cdot x^2y^4\cdot xy}-\dfrac{2y^2}{x^2}\cdot4\sqrt{2}\cdot x^3\sqrt{xy}+\dfrac{3}{2}xy\cdot\sqrt{2}\cdot y\cdot\sqrt{xy}\)
\(=5xy^2\sqrt{2xy}-8\sqrt{2xy}xy^2+\dfrac{3}{2}xy^2\cdot\sqrt{2xy}\)
\(=-\dfrac{3}{2}\sqrt{2xy}\)
d: \(=\left(x+2\right)\cdot\dfrac{\sqrt{2x-3}}{\sqrt{x+2}}=\sqrt{\left(2x-3\right)\left(x+2\right)}\)
\(A=\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
\(B=\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\dfrac{a}{\sqrt{ab}}+\dfrac{b}{\sqrt{ab}-a}\dfrac{a+b}{\sqrt{ab}}\right)\)
a. Rút gọn biểu thức
b. Tìm giá trị nguyên của x để biểu thức có giá trị nguyên
chỗ đầu mình nhầm B = \(\left(\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(....\right)\)
cho 3 số thực a,b,c không âm thỏa mãn \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)
CMR: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+b}+\dfrac{\sqrt{c}}{1+c}=\dfrac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cho a,b,c>0 thỏa mãn : \(ab+bc+ca=0\)
C/m: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3+\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\dfrac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\dfrac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
may cai nay tuong hoi truoc co nguoi dang roi ma
ta có:
\(\sqrt{\dfrac{\left(a+b\right).\left(a+c\right)}{a^2}}\le\dfrac{1}{2}.\left(\dfrac{a+b}{a}+\dfrac{a+c}{a}\right)=a+\dfrac{b}{2}+\dfrac{c}{2}\)
tương tự thì ta có:
\(VP\le3+2\left(a+b+c\right)\)
\(VP=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3+\dfrac{2}{ab}+\dfrac{2}{ac}+\dfrac{2}{bc}\)
từ các điều trên ta thấy cần CM:
\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge a+b+c\)
bạn tự CM nốt ạ