\(\sqrt{81x-8}=x^3-2x^2+\frac{4}{3}x-2 \)
Giải pt : \(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
Lời giải:
PT $\Leftrightarrow 27\sqrt[3]{81x-8}=27x^3-54x^2+36x-54$
$\Leftrightarrow 27\sqrt[3]{81x-8}=(3x-2)^3-46$
Đặt $\sqrt[3]{81x-8}=a; 3x-2=b$. Khi đó:
\(\left\{\begin{matrix} a^3-27b=46\\ 27a=b^3-46\end{matrix}\right.\) $\Rightarrow 27a=b^3-(a^3-27b)$
$\Leftrightarrow a^3-b^3+27a-27b=0$
$\Leftrightarrow (a-b)(a^2+ab+b^2+27)=0$
Dễ thấy $a^2+ab+b^2+27>0$ với mọi $a,b\in\mathbb{R}$
Do đó $a-b=0\Rightarrow a=b$
$\Leftrightarrow 81x-8=(3x-2)^3$
$\Leftrightarrow 27x^3-54x^2-45x=0$
$\Rightarrow x=0; x=\frac{3\pm 2\sqrt{6}}{3}$
Vậy.......
\(\sqrt[3]{{81x - 8}} = {x^3} - 2{x^2} + \dfrac{4}{3}x - 2\left( 1 \right)\)
\(\left( 1 \right) \Leftrightarrow 27{x^3} - 54{x^2} + 36x - 54 = 27\sqrt[3]{{81x - 8}} \)
Đặt \(y=\sqrt[3]{81x-8}\Leftrightarrow y^3=81x-8\)
Vậy ta có hệ phương trình \(\left\{{}\begin{matrix}27x^3-54x^2+36x-54=27y\\81x-8=y^3\end{matrix}\right.\Rightarrow\left(3x-2\right)^3+27\left(3x-2\right)=y^3+y\left(2\right)\)
Xét hàm số \(f(t)=t^3+t(t \in \mathbb{R})\)
Đạo hàm \(f'\left(t\right)=3t^2+1>0;\forall t\in\) \(\mathbb{R}\)
Vậy hàm số trên đồng biến trên \(\mathbb{R}\)
\(\left(2\right)\Leftrightarrow f\left(3x-2\right)=f\left(y\right)\\ \Leftrightarrow3x-2=y\\ \Leftrightarrow3x-2=\sqrt[3]{81x-8}\\ \Leftrightarrow27x^3-54x^2-45x=0\)
\(\Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{{3 \pm 2\sqrt 6 }}{3} \end{array} \right.\)
Vậy phương trình có tập nghiệm: \(T = \left\{ {0;\dfrac{{3 \pm 2\sqrt 6 }}{3}} \right\}\)
Cách khác:
Phương trình đã cho tương đương với \(3.\sqrt[3]{{3\left( {x - \dfrac{2}{3}} \right) + \dfrac{{46}}{{27}}}} = {\left( {x - \dfrac{2}{3}} \right)^2} - \dfrac{{46}}{{27}}\)
Đặt \(\left\{ \begin{array}{l} u = x - \dfrac{2}{3}\\ v = \sqrt[3]{{3\left( {x - \dfrac{2}{3}} \right) + \dfrac{{46}}{{27}}}} = \sqrt[3]{{3u + \dfrac{{46}}{{27}}}} \end{array} \right.\) ta có hệ: \(\left\{ \begin{array}{l} 3u = {v^3} - \dfrac{{46}}{{27}}\\ 3v = {u^3} - \dfrac{{46}}{{27}} \end{array} \right. \)
Trừ hai phương trình cho nhau theo từng vế ta có:
\(3\left( {u - v} \right) = \left( {v - u} \right)\left( {{v^2} + uv + {u^2}} \right) \Leftrightarrow \left[ \begin{array}{l} u - v = 0{\rm{ }}\left( 1 \right)\\ {v^2} + uv + {u^2} = - 3{\rm{ }}\left( 2 \right) \end{array} \right. \)
Dễ thấy \(v^2+uv+u^2\ge0\) nên \((2)\) vô nghiệm.
\(\left( 1 \right) \Leftrightarrow u = v \Rightarrow \sqrt[3]{{3x - \dfrac{8}{{27}}}} = x - \dfrac{2}{3} \Leftrightarrow {x^3} - 2{x^2} - \dfrac{5}{3} = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{{3 \pm 2\sqrt 6 }}{3} \end{array} \right.\)
Vậy \(T = \left\{ {0;\dfrac{{3 \pm 2\sqrt 6 }}{3}} \right\}\)
\(2x^4+2016=x^4\sqrt{x+3}+2016x\\ \)
\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\\ \)
\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-x-\frac{1}{x}\\ \)
a)\(2x^4+2016=x^4\sqrt{x+3}+2016x\)
a)\(pt\Leftrightarrow2x^4-2016x+2014=x^4\sqrt{x+3}-2\)
\(\Leftrightarrow2x^4-2016x+2014=x^4\sqrt{x+3}-2\)
\(\Leftrightarrow2\left(x-1\right)\left(x^3+x^2+x-1007\right)=\frac{x^8\left(x+3\right)-4}{x^4\sqrt{x+3}+2}\)
\(\Leftrightarrow2\left(x-1\right)\left(x^3+x^2+x-1007\right)-\frac{\left(x-1\right)\left(x^8+4x^7+4x^6+4x^5+4x^4+4x^3+4x^2+4x+4\right)}{x^4\sqrt{x+3}+}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2\left(x^3+x^2+x-1007\right)-\frac{\left(x^8+4x^7+4x^6+4x^5+4x^4+4x^3+4x^2+4x+4\right)}{x^4\sqrt{x+3}+}\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
bài này nghiệm khủng :vko liên hp dc, với sợ bị nhai lại nên đưa link tham khảo nhé :v
Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học
c)\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-x-\frac{1}{x}\)
\(pt\Leftrightarrow\sqrt{2-x^2}-1+\sqrt{2-\frac{1}{x^2}}-1=2-x-\frac{1}{x}\)
\(\Leftrightarrow\frac{2-x^2-1}{\sqrt{2-x^2}+1}+\frac{2-\frac{1}{x^2}-1}{\sqrt{2-\frac{1}{x^2}}+1}=-\frac{x^2-2x+1}{x}\)
\(\Leftrightarrow\frac{1-x^2}{\sqrt{2-x^2}+1}+\frac{\frac{x^2-1}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{x^2-2x+1}{x}=0\)
\(\Leftrightarrow\frac{-\left(x-1\right)\left(x+1\right)}{\sqrt{2-x^2}+1}+\frac{\frac{\left(x-1\right)\left(x+1\right)}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{\left(x-1\right)^2}{x}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{-\left(x+1\right)}{\sqrt{2-x^2}+1}+\frac{\frac{x+1}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{x-1}{x}\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
Giải phương trình :
\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
Đặt \(\sqrt[3]{81x-8}=3y-2\)
\(\Leftrightarrow81x-8=27y^3-54y^2+36y-8\)
\(\Leftrightarrow27y^3-54y^2+36y=81x\)
\(\Leftrightarrow3y^3-6y^2+4y=9x\)
Phương trình đã cho tương đương:
\(3\sqrt[3]{81x-8}=3x^3-6x^2+4x-6\)
\(\Leftrightarrow3\left(3y-2\right)=3x^3-6x^2+4x-6\)
\(\Leftrightarrow3x^3-6x^2+4x=9y\)
Ta có hệ phương trình \(\left\{{}\begin{matrix}3y^3-6y^2+4y=9x\left(1\right)\\3x^3-6x^2+4x=9y\left(2\right)\end{matrix}\right.\)
Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được
\(3\left(y^3-x^3\right)-6\left(y^2-x^2\right)+4\left(y-x\right)=9\left(x-y\right)\)
\(\Leftrightarrow3\left(y-x\right)\left(y^2+x^2+xy\right)-6\left(y-x\right)\left(x+y\right)+13\left(y-x\right)=0\)
\(\Leftrightarrow\left(3y^2+3x^2+3xy-6x-6y+13\right)\left(y-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3y^2+3x^2+3xy-6x-6y+13=0\left(3\right)\\y-x=0\end{matrix}\right.\)
Phương trình \(3y^2+3y\left(x-2\right)+3x^2-6x+13=0\)
\(\Delta=9\left(x-2\right)^2-12\left(3x^2-6x+13\right)=-27x^2+36x-120< 0\)
\(\Rightarrow\) Phương trình \(\left(3\right)\) vô nghiệm
\(\Rightarrow y=x\)
Khi đó \(\sqrt[3]{81x-8}=3x-2\)
\(\Leftrightarrow27x^3-54x^2-33x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{3\pm2\sqrt{5}}{3}\end{matrix}\right.\)
Giải pt
a) \(\sqrt[3]{81x-8}=x^3-2x^2+\dfrac{4}{3}x-2\)
b) \(\left(x+1\right)\left(\sqrt{x^2+2}+\sqrt{x^2+2x+3}\right)>\sqrt{x^2+2}-2x-1\)
a, Đặt \(\sqrt[3]{81x-8}=3y-2\Leftrightarrow9x=3y^3-6y^2+4y\left(1\right)\)
Phương trình tương đương: \(3y-2=x^3-2x^2+\dfrac{4}{3}x-2\)
\(\Leftrightarrow9y=3x^3-6x^2+4x\)
Ta có hệ: \(\left\{{}\begin{matrix}9x=3y^3-6y^2+4y\\9y=3x^3-6x^2+4x\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)\left(3x^2+3y^2+3xy-6x-6y+13\right)=0\)
Vì \(3x^2+3y^2+3xy-6x-6y+13\)
\(=\dfrac{1}{2}\left[3\left(x+y\right)^2+3\left(x-2\right)^2+3\left(y-2\right)^2+2\right]>0\) nên \(x=y\)
Khi đó: \(\left(1\right)\Leftrightarrow3x^3-6x^2-5x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3\pm2\sqrt{6}}{3}\end{matrix}\right.\)
Thử lại ta được \(x=0;x=\dfrac{3\pm2\sqrt{6}}{3}\) là các nghiệm của phương trình.
giải pt :
a, \(\sqrt[3]{3x-5}=\left(2x-3\right)^3-x+2\)
b, \(\sqrt[3]{81x-8}=x^3-2x^2+\dfrac{4}{3}x-2\)
c,\(\sqrt[3]{x-2}=8x^3-60x^2+151x-128\)
a.
\(\Leftrightarrow\sqrt[3]{3x-5}=\left(2x-3\right)^3+2x-3-\left(3x-5\right)\)
Đặt \(\left\{{}\begin{matrix}2x-3=a\\\sqrt[3]{3x-5}=b\end{matrix}\right.\)
\(\Rightarrow b=a^3+a-b^3\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt[3]{3x-5}=2x-3\)
\(\Leftrightarrow3x-5=\left(2x-3\right)^3\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
b.
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+3x-2-\sqrt[3]{81x-8}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{\left(3x-2\right)^3-\left(81x-8\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{27\left(x^3-2x^2-\dfrac{5}{3}x\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow\left(x^3-2x^2-\dfrac{5}{3}x\right)\left(1+\dfrac{27}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}\right)=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x=0\)
c.
\(\Leftrightarrow\sqrt[3]{x-2}=\left(2x-5\right)^3+x-3\)
\(\Leftrightarrow\sqrt[3]{x-2}=\left(2x-5\right)^3+\left(2x-5\right)-\left(x-2\right)\)
Đặt \(\left\{{}\begin{matrix}2x-5=a\\\sqrt[3]{x-2}=b\end{matrix}\right.\)
\(\Rightarrow b=a^3+a-b^3\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x-5=\sqrt[3]{x-2}\)
\(\Leftrightarrow\left(2x-5\right)^3=x-2\)
\(\Leftrightarrow\left(x-3\right)\left(8x^2-36x+41\right)=0\)
Lâu lắm ko inbox nên hôm nay quá nhiều bài cho anh em
1. \(2x^2-11x+21-3\sqrt[3]{4x-4}=0\)
2.\(\sqrt{\frac{x^3+1}{x^2+1}}=\frac{2}{5}\)
3.\(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
4.\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
5.\(32x^4-80x^3+50x^2+4x-3-4\sqrt{x-1}=0\)
6.\(\sqrt{5x^3+2x^2+12x-7}=\frac{x^2}{2}+2x-3\)
\Nếu dùng liên hợp phải chứng minh vế lủng củng vô nghiệm
con 6 tách trong căn thành nhân tử nhân 2 vế cho 2 rồi tách thành hđt
(Nghi binh 20/09)
Giải các phương trình sau:
a)\(32x^4-80x^3+50x^2+4x-3-4\sqrt{x-1}=0\)
b) \(\sqrt{5x^3-12x^2+12x-7}=\frac{x^2}{2}+2x-3\)
c)\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
d)\(x+\sqrt{2x-3}=1+\sqrt{x-1}+\sqrt{x^2-3x+3}\)
e) \(\left(2x-1\right)\sqrt{x^2+1}=x^2+4x-5\)
f)\(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\)
g)\(2\left(x^2+2x+3\right)=5\sqrt{x^3+3x^2+3x+2}\)
h)\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
i)\(\sqrt{x\left(x+1\right)}+\sqrt{x\left(x+2\right)}=\sqrt{x\left(x-3\right)}\)
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )
1, \(\frac{x}{2}-\frac{3-x}{3}=\frac{2x+2}{5}\)
2,1-\(\frac{3-x}{3}=\frac{2x+2}{5}-\frac{2-x}{4}\)
3,\(\frac{2}{3}x+1=x-5\)
4, 2x-x2 =0
5,\(\frac{4x}{x+1}+\frac{x+3}{x}=6\)
6, \(\frac{x-1}{x-3}+\frac{2x+2}{x-2}=8\)
7, \(\sqrt{x-1}=\sqrt{2}\)
8, \(\sqrt{2x-1}=\sqrt{x}-4\)
giải phương trình
a) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-\sqrt{2x-1}}=4\)
b) \(4x^2+3x+3=4x\sqrt{x+3}+2\sqrt{2x-1}\)
c) \(\sqrt{x-4}+\sqrt{6-x}=x^2-11x+27\)
d) \(\sqrt{13x^2-6x+10}+\sqrt{5x^2-13x+\frac{17}{2}}+\sqrt{17x^2-48x+36}=\frac{1}{2}\left(36x-8x^2-21\right)\)
e) \(\sqrt{\frac{6}{3-x}}+\sqrt{\frac{8}{2-x}}=6\)