Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Mỹ Hoa
Xem chi tiết
ngonhuminh
16 tháng 9 2017 lúc 22:26

\(\left\{{}\begin{matrix}x=2014\\T=\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}\end{matrix}\right.\)

\(T=\sqrt{\dfrac{x^2+2x+1}{x^2}-\dfrac{2}{x}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\left(\dfrac{x+1}{x}\right)^2-2.\left(\dfrac{x+1}{x}\right)\left(\dfrac{1}{x}\right)+\dfrac{1}{\left(x+1\right)^2}}\)\(T=\sqrt{\left(\dfrac{x+1}{x}-\dfrac{1}{x+1}\right)^2}=\left|\dfrac{x+1}{x}-\dfrac{1}{x+1}\right|\)

\(T=\left|\dfrac{2015}{2014}-\dfrac{1}{2015}\right|=\dfrac{2015}{2014}-\dfrac{1}{2015}\)

Linh Nhi
Xem chi tiết
Neko Chan
Xem chi tiết
Hoang Hung Quan
2 tháng 7 2017 lúc 10:18

Giải:

\(\dfrac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}\) \(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)

\(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\)

Áp dụng vào biểu thức ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}\) \(+...+\dfrac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}\)

\(=1-\dfrac{1}{\sqrt{2015}}\)

Nguyễn Đức Duy
Xem chi tiết
Nguyễn Đức Trí
5 tháng 9 2023 lúc 12:40

\(A=\sqrt[]{1+2015^2+\dfrac{2015^2}{2016^2}}+\dfrac{2015}{2016}\)

\(\Leftrightarrow A=\sqrt[]{\left(1+2015\right)^2-2.2015+\dfrac{2015^2}{\left(2015+1\right)^2}}+\dfrac{2015}{2016}\)

\(\Leftrightarrow A=\sqrt[]{\left(1+2015-\dfrac{2015}{2015+1}\right)^2}+\dfrac{2015}{2016}\)

\(\Leftrightarrow A=\left|1+2015-\dfrac{2015}{2016}\right|+\dfrac{2015}{2016}\)

\(\Leftrightarrow A=1+2015-\dfrac{2015}{2016}+\dfrac{2015}{2016}\)

\(\Leftrightarrow A=1+2015=2016\)

Mai Thanh Hoàng
Xem chi tiết
Trang Seet
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2022 lúc 16:06

a: \(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2\sqrt{x}}{\left(x+1\right)\left(1-\sqrt{x}\right)}\right):\dfrac{x+1-2\sqrt{x}}{x+1}\)

\(=\dfrac{x+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x-2\sqrt{x}+1}=\dfrac{1}{\sqrt{x}-1}\)

b: Khi x=2015-2 căn 2014 thì 

\(P=\dfrac{1}{\sqrt{2014}-1-1}=\dfrac{1}{\sqrt{2014}-2}=\dfrac{\sqrt{2014}+2}{2010}\)

c: Để P>=1 thì P-1>=0

=>(1-căn x+1)/căn x-1>=0

=>(căn x-2)/(căn x-1)<=0

=>1<căn x<=2

=>1<x<=4

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 14:52

\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Có 

Quỳnh Katori
Xem chi tiết
Nguyễn Tấn Tài
23 tháng 6 2017 lúc 22:23

Ta thấy: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+.....+\dfrac{1}{\sqrt{2015}}-\dfrac{1}{\sqrt{2016}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2016}}=\dfrac{\sqrt{2016}-1}{\sqrt{2016}}\)

svtkvtm
28 tháng 6 2019 lúc 11:05

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}.\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(\Rightarrow\frac{1}{2\sqrt{1}+1\sqrt{2}}+.....+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+......-\frac{1}{\sqrt{2016}}=1-\frac{1}{\sqrt{2016}}=\frac{\sqrt{2016}-1}{\sqrt{2016}}\)

♥Jungkookie♥
Xem chi tiết