tim x
2X =32
9x-1=9
Giải các phương trình sau:
a, x2 - 9x +20 = 0
b, x2 - 3x - 18 = 0
c, 2x2 - 9 x + 9 = 0
d, 3x2 - 8x + 4 = 0
e, 3x3 - 6x2 - 9x = 0
f, x(x - 5) - 2 + x = 0
g, x3 + 32 + 6x +8 = 0
h, 2x(x - 2) - 2 + x = 0
i, 5x(1 - x) + x - 1 = 0
k, 4 - 9(x - 1)2 = 0
l, (x - 2)2 - 36(x + 3)2 = 0
\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)
d: \(\Leftrightarrow3x^2-6x-2x+4=0\)
=>(x-2)(3x-2)=0
=>x=2 hoặc x=2/3
e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)
=>x(x-3)(x+1)=0
hay \(x\in\left\{0;3;-1\right\}\)
f: \(\Leftrightarrow x^2-5x-2+x=0\)
\(\Leftrightarrow x^2-4x-2=0\)
\(\Leftrightarrow\left(x-2\right)^2=6\)
hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)
A=[x^2+(2x+3)(x+1)-9]/9x^2-4.
Tim x nguyên để A đạt giá trị nguyên.
Tim X:
a)4x=64 b)x4=16
c)9x-1=9 d)2x:25=1
tim x biết
3x+4=0
2x*(x-1)-(1+2x)=-34
X^2+9x-10=0
(7x-1)*(2+5x)=0
\(3x+4=0\Leftrightarrow x=-\dfrac{4}{3}\\ 2x\left(x-1\right)-\left(1+2x\right)=-34\\ \Leftrightarrow2x^2-2x-1-2x=-34\\ \Leftrightarrow2x^2-4x+33=0\\ \Leftrightarrow2\left(x^2-2x+1\right)+30=0\\ \Leftrightarrow2\left(x-1\right)^2+30=0\\ \Leftrightarrow x\in\varnothing\left[2\left(x-1\right)^2+30\ge30>0\right]\\ x^2+9x-10=0\\ \Leftrightarrow x^2-x+10x-10=0\\ \Leftrightarrow\left(x-1\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-10\end{matrix}\right.\\ \left(7x-1\right)\left(2+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}7x-1=0\\2+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
Tìm x:
x^2 + 6x
x^2 - 25x + 250 = 0
x^2 + 9x = 10
2x^2 + 9x = 35
(x^2 - 2x - 1)^2 - 5 (x^2 - 2x - 1) - 14 = 0
(2k^2 + 5k + 1)^2 - 12 (2k^2 + 5k + 1) + 32 = 0
c) x2 + 9x = 10
x2 + 9x - 10 = 0
=> x2 - x + 10x - 10 = 0
=> x(x - 1) + 10(x - 1) = 0
=> (x + 10)(x - 1) = 0
=> \(\orbr{\begin{cases}x=-10\\x=1\end{cases}}\)
d) 2x2 + 9x = 35
=> 2x2 + 9x - 35 = 0
=> 2x2 + 14x - 5x - 35 = 0
=> 2x(x + 7) - 5(x + 7) = 0
=> (x + 7)(2x - 5) = 0
=> \(\orbr{\begin{cases}x=-7\\x=\frac{5}{3}\end{cases}}\)
(x2 - 2x - 1)2 - 5(x2 - 2x - 1) - 14 = 0
=> (x2 - 2x - 1)2 + 2(x2 - 2x - 1) - 7(x2 - 2x - 1) - 14 = 0
=> (x2 - 2x - 1)(x2 - 2x + 1) - 7(x2 - 2x + 1) = 0
=> (x2 - 2x + 1)(x2 - 2x - 8) = 0
=> (x - 1)2 (x - 4)(x + 2) = 0
=> x = 1 hoặc x = 4 hoặc x = -2
e) (2k2 + 5k + 1)2 - 12(2k2 + 5k + 1) + 32 = 0
=> (2k2 + 5x + 1)2 - 4(2k2 + 5k + 1) - 8(2k2 + 5k + 1) + 32 = 0
=> (2k2 + 5k + 1)(2k2 + 5k - 3) - 8(2k2 + 5k - 3) = 0
=> (2k2 + 5k - 3)(2k2 + 5k - 7) = 0
=> (2k2 + 6k - k - 3)(2k2 - 2x + 7k - 7) = 0
=> (k + 3)(2k - 1)(k - 1)(2k + 7) = 0
=> k = -3 hoặc k = 1/2 hoặc k = 1 hoặc k = -7/2
1.x2 + 6x = 0 < như này nhỉ ? >
⇔ x( x + 6 ) = 0
⇔ x = 0 hoặc x + 6 = 0
⇔ x = 0 hoặc x = -6
2. x2 - 25x + 250 = 0
⇔ ( x2 - 25x + 625/4 ) + 375/4 = 0
⇔ ( x - 25/2 )2 = -375/4 ( vô lí )
=> Phương trình vô nghiệm
3. x2 + 9x = 10
⇔ x2 + 9x - 10 = 0
⇔ x2 - x + 10x - 10 = 0
⇔ x( x - 1 ) + 10( x - 1 ) = 0
⇔ ( x - 1 )( x + 10 ) = 0
⇔ x - 1 = 0 hoặc x + 10 = 0
⇔ x = 1 hoặc x = -10
4. 2x2 + 9x = 35
⇔ 2x2 + 9x - 35 = 0
⇔ 2x2 + 14x - 5x - 35 = 0
⇔ 2x( x + 7 ) - 5( x + 7 ) = 0
⇔ ( x + 7 )( 2x - 5 ) = 0
⇔ x + 7 = 0 hoặc 2x - 5 = 0
⇔ x = -7 hoặc x = 5/2
5. ( x2 - 2x - 1 )2 - 5( x2 - 2x - 1 ) - 14 = 0
Đặt t = x2 - 2x - 1
bthuc ⇔ t2 - 5t - 14 = 0
⇔ t2 - 7t + 2t - 14 = 0
⇔ t( t - 7 ) + 2( t - 7 ) = 0
⇔ ( t - 7 )( t + 2 ) = 0
⇔ ( x2 - 2x - 1 - 7 )( x2 - 2x - 1 + 2 ) = 0
⇔ ( x2 - 4x + 2x - 8 )( x - 1 )2 = 0
⇔ ( x - 4 )( x + 2 )( x - 1 )2 = 0
⇔ x - 4 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0
⇔ x = 4 hoặc x = -2 hoặc x = 1
6. ( 2k2 + 5k + 1 )2 - 12( 2k2 + 5k + 1 ) + 32 = 0
Đặt t = 2k2 + 5k + 1
bthuc ⇔ t2 - 12t + 32 = 0
⇔ t2 - 8t - 4t + 32 = 0
⇔ t( t - 8 ) - 4( t - 8 ) = 0
⇔ ( t - 8 )( t - 4 ) = 0
⇔ ( 2k2 + 5k + 1 - 8 )( 2k2 + 5k + 1 - 4 ) = 0
⇔ ( 2k2 - 2k + 7k - 7 )( 2k2 - k + 6k - 3 ) = 0
⇔ ( k - 1 )( 2k + 7 )( 2k - 1 )( k + 3 ) = 0
⇔ k = 1 hoặc k = -7/2 hoặc k = 1/2 hoặc k = -3
tim a,b thuoc N* biết : ab = 6144 , ƯCLN(a,b) = 32
tìm x thuộc N biết
x + 2x +3x + ... +9x = 459 - 32
2 x + 3 +2x = 144
tim a,b thuoc N* biết : ab = 6144 , ƯCLN(a,b) = 32
tìm x thuộc N biết
x + 2x +3x + ... +9x = 459 - 32
2 x + 3 +2x = 144
\(x+2x+3x+...+9x=459-3^2\)
\(\Rightarrow9x+\left(1+2+3+...+9\right)=450\)
\(\Rightarrow9x+\frac{\left[\left(9+1\right).9\right]}{2}=450\)
\(\Rightarrow9x+45=450\)
\(\Rightarrow9x=450-45\)
\(\Rightarrow x=\frac{450-45}{9}=\frac{405}{9}=45\)
\(2^{x+3}+2^x=144\)
\(\Rightarrow2^x\left(2^3+1\right)=144\)
\(\Rightarrow2^x.9=144\)
\(\Rightarrow2^x=\frac{144}{9}=16=2^4\)
Vậy \(x=4\)
€£¥€£¥$$$£¥$£€$£¥$$€££$£$£#£$€$££$¥$£$££#£#£$£#££#£$£$££$£$£$£$£#££$£££$£$£$£$££$£$£$£$£#££#£$£#£#£#££#£$£$£#$£$££$£$€$€£$£$¥£$$€€$£$£$£$
Tim GTNN:
a)9x2-6x+2 b)x2+x+1 c)2x2+2x+1 d)x2-2x+5
a) \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\)
Ta có: \(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra khi 3x - 1 = 0
hay 3x = 1 hay \(x=\dfrac{1}{3}\)
Vậy GTNN của biểu thức là 1 khi x = \(\dfrac{1}{3}\).
b) \(x^2+x+1\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra khi \(x+\dfrac{1}{2}=0\) hay \(x=-\dfrac{1}{2}\)
Vậy GTNN của biểu thức là \(\dfrac{3}{4}\) khi x = \(-\dfrac{1}{2}\).
c) \(2x^2+2x+1\)
\(=2\left(x^2+x\right)+1\)
\(=2\left(x^2+x+\dfrac{1}{4}-\dfrac{1}{4}\right)+1\)
\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
Ta có: \(2\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\)
Dấu "=" xảy ra khi \(x+\dfrac{1}{2}=0\) hay \(x=-\dfrac{1}{2}\)
Vậy GTNN của biểu thức là \(\dfrac{1}{2}\) khi \(x=-\dfrac{1}{2}\).
d) \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu "=" xảy ra khi x - 1 = 0 hay x = 1
Vậy GTNN của biểu thức là 4 khi x = 1.
a) \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\ge1\forall x\)
\(\Rightarrow\) GTNN của biểu thức là 1 khi \(\left(3x-1\right)^2=0\Leftrightarrow3x-1=0\Leftrightarrow3x=1\Leftrightarrow x=\dfrac{1}{3}\)
vậy GTNN của biểu thức là 1 khi \(x=\dfrac{1}{3}\)
b) \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
\(\Rightarrow\) GTNN của biểu thức là \(\dfrac{3}{4}\) khi \(\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{-1}{2}\)
vậy GTNN của biểu thức là \(\dfrac{3}{4}\) khi \(x=\dfrac{-1}{2}\)
c) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=2\left(\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\)
\(\Rightarrow\) GTNN của biểu thức là \(\dfrac{1}{2}\) khi \(\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{-1}{2}\)
vậy GTNN của biểu thức là \(\dfrac{1}{2}\) khi \(x=\dfrac{-1}{2}\)
d) \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow\) GTNN của biểu thức là 4 khi \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
vậy GTNN của biểu thức là 4 khi \(x=1\)
Tim x:
a) 2x-3=1/2
b) /x+1/=0.25
c) 32/2x=2
d) 64/125=(4/5)^x
e) x/6=-9/18
f) -4/x+3=12/-15
g) x+1/2/0.75=3/2/0.25
TÌM X:
a) 2x - 3 = \(\frac{1}{2}\)
2x = \(\frac{1}{2}+3\)
2x = \(\frac{7}{2}\)
x = 2 : \(\frac{7}{2}\)
x = 2 . \(\frac{2}{7}\)
x = \(\frac{4}{7}\)
b) /x+1/ = 0.25
/x+1/ = \(\frac{1}{4}\)
\(\orbr{\begin{cases}x+1=\frac{1}{4}\\x+1=-\frac{1}{4}\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{1}{4}-1\\x=-\frac{1}{4}-1\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{3}{4}\\x=-\frac{5}{4}\end{cases}}\)
c) 32 : 2x = 2
\(2x=32:2\)
\(2x=16\)
\(x=16:2\)
\(x=8\)
~GOOD STUDY~
a) 2x-3=1/2
=> 2x=1/2+3
=> 2x=7/2
=> x=7/2:2
=> x=7/4
b) |x+1|=0.25
=> \(\orbr{\begin{cases}x+1=0,25\\x+1=-0,25\end{cases}}\)=>\(\orbr{\begin{cases}x=0,25-1\\x=-0,25-1\end{cases}}\)=>\(\orbr{\begin{cases}x=-0,75\\x=-1,25\end{cases}}\)