Cho tam giác ABC vuông tại A ,đường cao AH Chứng minh (AB+BC+CA)(AB-BC+CA)\(\ge4AH^2\)
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A, D ∈ BC. a) Tính DB/DC? b) Kẻ đường cao AH (H ∈ BC). Chứng minh rằng: AH/CH=AB/CA
a) Do AD là phân giác của ∠A
⇒ DB/DC = 8/6 = 4/3
b) Xét hai tam giác vuông: ∆AHB và ∆CHA có:
∠HAB = ∠HCA (cùng phụ ∠B)
⇒ ∆AHB ∽ ∆CHA (g-g)
⇒ AH/CH = AB/CA
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A, D ∈ BC. a) Tính DB/DC? b) Kẻ đường cao AH (H ∈ BC). Chứng minh rằng: AH/CH=AB/CA
a) Do AD là phân giác của ∠A
⇒ DB/DC = 8/6 = 4/3
b) Xét hai tam giác vuông: ∆AHB và ∆CHA có:
∠HAB = ∠HCA (cùng phụ ∠B)
⇒ ∆AHB ∽ ∆CHA (g-g)
⇒ AH/CH = AB/CA
a: DB/DC=AB/AC=4/3
b: Sửa đề: AH/CA=AB/BC
\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)
=>AH*BC=AB*AC
=>AH/AC=AB/CB
cho tam giác ABC vuông tại A . đường cao AH . trên BC lấy M sao cho CM= CA . đường thẳng qua M song song CA cắt AB tại I .
a )tứ giác ACMI là hình gì . vì sao
b ) chứng minh rằng : 2AH + BC >AB +B
Cho tam giác ABC vuông tại A(AB<AC), vẽ đường cao AH (H thuộc BC)
a) Chứng minh tam giác ACH đồng dạng với tam giác BCA
b) Trên AC lấy điểm E sao cho AB=AE. Vẽ ED vuông góc bới BC (D thuộc BC). Chứng minh CE×CA=CD×CB
c) Chứng minh AH=HD
d) Chứng minh AD×AB=AE×BD + AB×DE
2 Cho tam giác ABC vuông ở A, AH là đường cao, M là 1 điểm trên BC sao cho CM=CA. Đường thẳng đi qua M song song với CA cắt AB tại I
a) Tứ giác ACMI là hình gì
b) Chứng minh rằng AM là phân giác của góc BAH và AI =AH
c) Chứng minh rằng AB+AC<AH+BC
2 Cho tam giác ABC vuông ở A,AH là đường cao, M là 1 điểm trên BC sao cho CM=CA. Đường thẳng đi qua M song song với CA cắt AB tại I
a) Tứ giác ACMI là hình gì
b) Chứng minh rằng AM là phân giác của góc BAH và AI=AH
c) Chứng minh rằng AB+AC<AH+BC
a) Theo đề bài ta có :
\(MI//CA\) ( GT)
=> ACMI là hình thang ( định nghĩa)
Xét hình thang ACMI ta có :
\(\widehat{A}=90^o\)
=> ACMI là hình thang vuông
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Câu 3. Cho ∆ABC vuông tại A (AB < AC). Về phía ngoài ∆ABC vẽ hai tam
giác ABD và tam giác ACE vuông cân ở A.
Chứng minh BC = DE.
Chứng minh BD // CE.
Kẻ đường cao AH của ∆ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông
góc MC cắt BC tại N. Chứng minh rằng CA NM.
Cho tam giác ABC vuông tại A(AB<AC). Về phía ngoài tam giác ABC vẽ Tam giác ABD và Tam giác ACE cân tại A
a) Chứng minh BC=DE
b) Chứng minh BD//CE
c) Kẻ đường cao AH Của tam giác ABC cắt DE Tại M. Vẽ đường thẳng qua A và vuông góc với MC Cắt BC tại N. Chứng minh rằng CA vuông góc với NM