\(x^2+y^2=a,x^3+y^3=c\)cho x+y= a, tính a^3 - 3ab+ 2c
Cho x+y=a ; x^2 +y^2 = b ; x^3 + y^3 = c
CMR : a^3 -3ab+2c=0
\(a^3-3ab+2c=0\)
\(=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)
\(=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-3x^2-3y^2+2x^2-2xy+2y^2\right]\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-3x^2-3y^2+2x^2-2xy+2y^2\right)\)
\(=\left(x+y\right).0\)
\(=0\)
Cho x+y = a , x^2+y^2 = b , x^3+y^3 = c. Chứng minh a^3 -3ab +2c =0
Cho \(x+y=a,x^2+y^2=b,x^3+y^3=c\). Tính giá trị biểu thức: \(a^3-3ab+2c\)
Cho : x + y = a , x^2 + y^2 =b , x^3 + y^3= c.
CMR : a^3 -3ab + 2c = 0
help : (
Ta có \(a^3-3ab+2c=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)
\(=x^3+3x^2y+3xy^2+y^3-3\left(x^3+x^2y+xy^2+y^3\right)+2\left(x^3+y^3\right)\)
\(=x^3+3x^2y+3xy^2+y^3-3x^3-3xy^2-3x^2y-3y^3+2x^3+2y^3\)
\(=0\left(đpcm\right)\)
BÀi 1 cho x + y = a , x^2 + y^2 = b , x^3 + y^3 = c
CM a^3 -3ab +2c=0
Bài 2 Cho x^2 + y^2 =1
Tính 2(x^6 + y^6) - 3(x^4 +y^4)
2/
2(x6+y6)-3(x4+y4)
=2[(x2)3+(y2)3 ] - 3x4-3y4
=2(x2+y2)(x4-x2y2+y4)-3x4-3y4
=2.1(x4-x2y2+y4)-3x4-3y4
=2x4-2x2y2+2y4-3x4-3y4
=-x4-2x2y2-y4
=-(x4+2x2y2+y4)
=-(x2+y2)
=-1
Cho x+y=2;x^2+y^2=b;x^3+y^3=c
Chứng minh a^3-3ab+2c=0
Sửa đề: Cho \(x+y=a;x^2+y^2=b;x^3+y^3=c\)
Chứng minh: \(a^3-2ab+2c=0\)
Giải:
Ta có:
\(a^3-3ab+2c=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)
\(=x^3+y^3+3xy\left(x+y\right)-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)
\(=3\left(x^3+y^3\right)+3\left(x+y\right)\left(xy-x^2-y^2\right)=3\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(x+y\right)\left(xy-x^2-y^2\right)\)
\(=3\left(x+y\right)\left(x^2-xy+y^2+xy-x^2-y^2\right)=3\left(x+y\right).0\)
\(=0\) (đpcm)
1) Cho x+y=a, x2+y2=b, x3+y3=c
C/m a3-3ab+2c=0
2)Cho x2+y2=1
Tính 2(x6+y6)-3(x4+y4)
bài 2
Giải:x6+y6)-3(x4+y4)
2(x6+y6)−3(x4+y4)2(x6+y6)−3(x4+y4)
⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4
⇔2(x4−x2y2+y4)−3x4−3y4⇔2(x4−x2y2+y4)−3x4−3y4
⇔2x4−2x2y2+2y4−3x4−3y4⇔2x4−2x2y2+2y4−3x4−3y4
⇔−2x2y2−x4−y4⇔−2x2y2−x4−y4
⇔−(x4+2x2y2+y4)⇔−(x4+2x2y2+y4)
⇔−(x2+y2)2⇔−(x2+y2)2
⇔−1
bài 1
bạn thay vào hết và tính ra là được
\(\Leftrightarrow\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)
\(\Leftrightarrow3x^3+3y^3+3xy\left(x+y\right)-3x^3-3y^3-3xy\left(x+y\right)=0\)(điều phải c/m)
Cho x + y = a; x2 + y2 = b; x3 + y3 = c
CMR a3 - 3ab + 2c = 0
\(a^3=\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)
\(3ab=3\left(x+y\right)\left(x^2+y^2\right)=3\left(x^3+x^2y+xy^2+y^3\right)\)
\(2c=2x^3+2y^3\)
\(a^3-3ab+2c=\left(x^3+y^3-3x^2-3y^2+2x^3+2y^3\right)+3\left(x^2y-xy^2+xy^2-xy^2\right)=0\)
Cho x,y thỏa mãn cùng lúc: x+y=a; x2+y2=b; x3+y3=c .Chứng minh rằng : a3+2c=3ab.
Từ x+y=a x2+y2=b x3+y3=c
=>a3+2c=(x+y)3+2x3+2y3=x3+3x2y+3xy2+y3+2x3+2y3=3(x3+y3+x2y+xy2)(1)
3ab=3(x+y)(x2+y2)=3(x3+y3+x2y+xy2)(2)
Từ 1 và 2 =>a3+2c=3ab(ĐPCM)