làm thế nào để phân biệt đâu là ngiệm đâu là tập nghiệm của phương trình và bất phương trình ở phần kết luận ?
Bất phương trình y = f ( x ) có tập nghiệm là (a;b)
Tập tất cả các giá trị của tham số m để phương trình f ( x ) = m có ba nghiệm phân biệt là
A. ( 4 ; + ∞ ) .
B. ( − ∞ ; − 2 ) .
C. [ − 2 ; 4 ] .
D. ( − 2 ; 4 ) .
Chọn đáp án D
Số nghiệm của phương trình f ( x ) = m bằng
số giao điểm của đồ thị hàm số y = f ( x ) với
đường thẳng y = m
Từ bảng biến thiên suy ra phương trình có 3 nghiệm phân biệt khi − 2 < m < 4.
Cho bất phương trình: mx+ 6< 2x+3m .
Tập nào sau đây là phần bù của tập nghiệm của bất phương trình trên với m< 2 :
A. S = ( 3 ; + ∞ )
B. S = [ 3 ; + ∞ )
C. S = ( - ∞ ; 3 )
D. S = ( - ∞ ; 3 ]
Đáp án D
Bất phương trình mx+ 6< 2x+3m . tương đương với ( m-2) x< 3( m-2)
Hay x< 3 ( với m< 2)
Vậy phần bù của tập nghiệm là
Từ mối liên hệ sự biến đổi giữa lượng và chất trong triết học hãy cho biết trong quá trình học tập của em đâu là " độ ", đâu là " điểm nút " ? Qua đó em xây dựng phương pháp học tập của mình như thế nào để đạt hiệu quả .
Cho phương trình x 3 - 3 x 2 - 2 x + m - 3 + 2 2 x 3 + 3 x + m 3 . Tập S là tập hợp các giá trị của m nguyên để phương trình có ba nghiệm phân biệt. Tính tổng các phần tử của S
A. 15.
B. 9.
C. 0.
D. 3.
Cho bất phương trình 2x ≤ 3.
a) Trong các số -2; 5/2; π; √10 số nào là nghiệm, số nào không là nghiệm của bất phương trình trên ?
b) Giải bất phương trình đó và biểu diễn tập nghiệm của nó trên trục số.
a) Ta có: 2. (-2) ≤ 3 nên -2 có là nghiệm của bất phương trình
+) không là nghiệm của bất phương trình ,
+) 2π > 3 nên π không là nghiệm của bất phương trình.
+) nên √10 không là nghiệm của bất phương trình,
Các số là nghiệm của bất phương trình trên là: -2;
Các số không là nghiệm của bất phương trình trên là: ; π; √10
b)2x ≤ 3 ⇔ x ≤ 3/2
Biểu diễn tập nghiệm trên trục số là:
Cho phương trình x 3 - 3 x 2 - 2 x + m - 3 + 2 2 x 3 + 3 x + m 3 = 0 . Tập S là tập hợp các giá trị của m nguyên để phương trình có ba nghiệm phân biệt. Tính tổng các phần tử của S.
A. 15.
B. 9.
C. 0.
D. 3.
Đáp án là B
Đặt
Ta có
Xét hàm số
Do đó hàm số liên tục và đồng biến trên ℝ
Xét
Bảng biến thiên
Từ bảng biến thiên suy ra -5 < -m < -1
Vậy tổng các phần tử của S bằng 9.
Cho phương trình x 3 - 3 x 2 - 2 x + m - 3 + 2 2 x 3 + 3 x + m 3 = 0 . Tập S là tập hợp các giá trị của m nguyên để phương trình có ba nghiệm phân biệt. Tính tổng các phần tử của S.
A. 15.
B. 9.
C. 0.
D. 3.
Câu 1: Giải và biện luận bất phương trình \(m^2x+m\ge2-4x\)
Câu 2: Tìm giá trị thực của tham số m để bất phương trình \(m\left(2x-1\right)\ge2x-1\) có tập nghiệm là \([1;+\infty)\)
1.
\(\Leftrightarrow\left(m^2+4\right)x\ge2-m\)
Do \(m^2+4>0\) ; \(\forall m\)
\(\Rightarrow x\ge\dfrac{2-m}{m^2+4}\)
2.
\(\Leftrightarrow2mx-2x\ge m-1\Leftrightarrow2\left(m-1\right)x\ge m-1\)
- Với \(m>1\Rightarrow m-1>0\)
\(\Rightarrow x\ge\dfrac{m-1}{2\left(m-1\right)}\Leftrightarrow x\ge\dfrac{1}{2}\) \(\Rightarrow D=[\dfrac{1}{2};+\infty)\)
- Với \(m< 1\Rightarrow m-1< 0\Rightarrow x\le\dfrac{m-1}{2\left(m-1\right)}\Leftrightarrow x\le\dfrac{1}{2}\) \(\Rightarrow D=(-\infty;\dfrac{1}{2}]\)
- Với \(m=1\Leftrightarrow0\ge0\Rightarrow D=R\)
Quan sát 3 TH ta thấy không tồn tại m để tập nghiệm của BPT là \([1;+\infty)\)
Cho phương trình log2(10x) - 2mlog10xx - log(10x2)=0 . Gọi S là tập chứa tất cả các giá trị nguyên của m thuộc [-10;10] để phương trình đã cho có đúng 3 nghiệm phân biệt . Số phần tử của tập S là