Tính diện tích tam giác BAC theo R và r biết hai đường tròn (O; R) và (O' r) tiếp xúc ngoài với nhau tại A. Vẽ tiếp tuyến chung ngoài BC với B ∈ (O), C ∈ (O'). Đường vuông góc với OO' kẻ từ A cắt BC ở M
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài với nhau tại A. Vẽ tiếp tuyến chung ngoài BC với B ∈ (O), C ∈ (O'). Đường vuông góc với OO' kẻ từ A cắt BC ở M
a, Tính MA theo R và r
b, Tính diện tích tứ giác BCO'O theo R và r
c, Tính diện tích ∆BAC theo R và r
d, Gọi I là trung điểm của OO'. Chứng minh rằng BC là tiếp tuyến của đường tròn (I; IM)
a, Chứng minh được tương tự câu 1a,
=> O ' M O ^ = 90 0
Áp dụng hệ thức lượng trong tam giác vuông tính được MA = R r
b, Chứng minh
S
B
C
O
O
'
=
R
+
r
R
r
c, Chứng minh được: ∆BAC:∆OMO’ => S B A C S O M O ' = B C O O ' 2
=> S B A C = S O M O ' . B C 2 O O ' 2 = 4 R r R r R + r
d, Tứ giác OBCO’ là hình thang vuông tại B và C có IM là đường trung bình => IM ⊥ BC = {M}
1. Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R = 3cm. Tính diện tích hình quạt tạo bởi hai bán kính OB,OC và cung nhỏ BC khi \(\widehat{BAC}=60^o\)
2. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm nội tiếp đường tròn (O). Tính diện tích hình tròn (O)
2: ΔABC vuông tại A nội tiếp (O)
=>O là trung điểm của BC
BC=căn 6^2+8^2=10cm
=>OB=OC=10/2=5cm
S=5^2*3,14=78,5cm2
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R), hai đường cao BE và CF của tam giác cắt nhau tại H. Kẻ đường kính AK của đường tròn (O; R), gọi I là trung điểm của BC.
a) Chứng minh AH = 2.IO.
b) Biết góc BAC = 60o, tính độ dài dây BC theo R.
a) Nối HK; BK; CK
+) Góc ACK ; góc ABK là góc nội tiếp chắn nửa đường tròn (O;R) => góc ACK = 90o ; góc ABK = 90o
=> AB | BK; AC | CK
Mà AB | CF; AC | BE nên CF // BK ; BE // CK => T/g BHCK là hình bình hành => 2 đường chéo BC ; HK cắt nhau tại trung điểm của mỗi đường
Mà I là trung điểm của BC => I là trung điểm của HK
+) Xét tam giác AKH có: O; I là trung điểm của AK; HK => OI là đường trung bình của tam giác AKH => AH = 2.OI
b) +) Góc BAC là nội tiếp chắn cung BC => Góc BAC = 1/2 góc BOC ( Mối liên hệ giữa góc ở tâm và góc nội tiếp)
=> góc BOC = 2.60o = 120o . Mà tam giác BOC cân tại O ; OI là đường trung tuyến nên đồng thời là đường p/g và đường cao
=> góc BOI = 1/2 góc BOC = 60o
+) Xét tam giác vuông BIO có: BI = OB.sin BOI = R. sin 60o = \(\frac{R\sqrt{3}}{2}\) => BC = 2.BI = \(R\sqrt{3}\)
Vậy....
Cho tam giác ABC có 3 góc nhọn nội tipe61 đường tròn (O;R) hai đường cao BE và CF của tam giác cắt nhau tại H .Kẻ đường kính AK của đường tròn (O;R); Gọi Ià trung điểm của BC.
a) Chứng minh AH=2OI
b) Biết góc BAC=60 độ. tính độ dài dây BC theo R
Cho hai đường tròn (O;R) và đường tròn (o;R/2) tiếp xúc ngoài với nhau tại A. Trên đường tròn (O) lấy B sao cho AB =R và điểm M trên cùng AB. Tia MA cắt đường tròn (o) tại N. Qua N kẻ đường thẳng song song với AB cắt đường thẳng MB ở Q và cắt đường tròn (o) ở P
a. Chứng minh: Tam giác OAM đồng dạng với tam giác oAN
b. Tính NQ theo R
c. Xác định vị trí của M để diện tích tứ giác ABQN đạt GTLN. Tính GTLN theo R
Cho tam giác ABC nội tiếp trong đường tròn tâm O, bán kính R có B A C ^ = 75 0 , A C B ^ = 60 0 . Kẻ B H ⊥ A C . Quay tam giác ABC quanh AC thì tma giác BHC tạo thành hình nón tròn xoay (N). Tính diện tích xung quanh của hình nón xoay (N) theo R
A. 3 + 2 2 2 π R 2
B. 3 + 2 3 2 π R 2
C. 3 2 + 1 4 π R 2
D. 3 3 + 1 4 π R 2
Lời giải:
Từ $O$ hạ $OH\perp AB$ thì $H$ là trung điểm của $AB$
Tam giác $OAB$ cân tại $O$ nên đường cao, đường trung tuyến $OH$ đồng thời là đường phân giác.
$\Rightarrow \widehat{AOH}=60^0$
$\sin \widehat{AOH}=\frac{AH}{AO}=\frac{\sqrt{3}}{2}$
$\Rightarrow AH=AO.\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}R$
$\Rightarrow AB=\sqrt{3}R$ (độ dài dây $AB$)
Diện tích tam giác $AOB$ là:
$\frac{1}{2}.OA.OB.\sin \widehat{AOB}=\frac{1}{2}R^2.\sin 120^0=\frac{\sqrt{3}}{4}R^2$
Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R = 3cm. Tính diện tích hình tròn giới hạn tạo bởi hai bán kính OB,OC và cung nhỏ BC khi \(\widehat{BAC}=60^0\)
\(\widehat{BAC}=60^o\Rightarrow\widehat{BOC}=120^o\). Diện tích cần tìm là \(\pi\).32-1/2.3.3.sin120o=9\(\pi\)-9\(\sqrt{3}\)/4 (cm2)\(\approx\)24,38 (cm2).
Cho đường tròn (O;R) và một điểm A ngoài đường tròn (O) sao cho OA = 3R. Từ A vẽ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm).
d) Tính theo R diện tích tam giác BDC.