\(\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\)
\(\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\)
ĐKXĐ: \(\left\{{}\begin{matrix}4x-20\ne0\\50-2x^2\ne0\\6x+30\ne0\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}4x-20\ne0\\x^2-25\ne0\\6x+30\ne0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x-5\ne0\\x+5\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne5\\x\ne-5\end{matrix}\right.\)
=> \(x\ne\pm5\)
Ta có : \(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
=> \(\frac{3}{4\left(x-5\right)}-\frac{15}{2\left(x-5\right)\left(x+5\right)}+\frac{7}{6\left(x+5\right)}=0\)
=> \(\frac{9\left(x+5\right)}{12\left(x^2-25\right)}-\frac{90}{12\left(x^2-25\right)}+\frac{14\left(x-5\right)}{12\left(x^2-25\right)}=0\)
=> \(9\left(x+5\right)-90+14\left(x-5\right)=0\)
=> \(9x+45-90+14x-70=0\)
=> \(23x=115\)
=> \(x=5\) ( KTM )
Vậy phương trình vô nghiệm .
\(\dfrac{3}{4x-30}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\)
\(\Leftrightarrow\dfrac{3}{4\left(x-5\right)}-\dfrac{15}{2\left(x-5\right)\left(x+5\right)}+\dfrac{7}{6\left(x+5\right)}=0\)
\(\Leftrightarrow3\cdot3\left(x+5\right)-15\cdot6+7\cdot2\cdot\left(x-5\right)=0\)
=>9x+45-90+14x-70=0
=>23x-115=0
hay x=5(loại)
a) Tìm TXĐ của biều thức. Với giá trị nào của x biểu thức vô nghĩa?
\(\dfrac{2-3x}{\dfrac{3x-2}{5}-\dfrac{x-4}{3}}\)
b) Tìm TXĐ của PT rồi giải PT:
\(\dfrac{3}{4x-20}\) + \(\dfrac{15}{50-2x^2}\) + \(\dfrac{7}{6x+30}\) = 0
a) Để biểu thức vô nghĩa thì \(\dfrac{3x-2}{5}-\dfrac{x-4}{3}=0\)
\(\Leftrightarrow\dfrac{3x-2}{5}=\dfrac{x-4}{3}\)
\(\Leftrightarrow3\left(3x-2\right)=5\left(x-4\right)\)
\(\Leftrightarrow9x-6=5x-20\)
\(\Leftrightarrow9x-5x=-20+6\)
\(\Leftrightarrow4x=-14\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
giải các phương trình
a. \(|2-5x|=\left|3x+1\right|\)
b. \(\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\)
c. \(\dfrac{x+29}{31}-\dfrac{x+27}{33}=\dfrac{x+17}{43}-\dfrac{x+15}{45}\)
\(\text{a) }\left|2-5x\right|=\left|3x+1\right|\\ \Leftrightarrow\left[{}\begin{matrix}2-5x=3x+1\\2-5x=-3x-1\end{matrix}\right. \Leftrightarrow\left[{}\begin{matrix}-5x-3x=1-2\\-5x+3x=-1-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-8x=-1\\-2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{8}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy tập nghiệm phương trình là \(S=\left\{\dfrac{1}{8};\dfrac{3}{2}\right\}\)
\(\text{b) }\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\)
ĐXKĐ của phương trình \(:x\ne\pm5\)
\(\text{Ta có }:\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\\ \Rightarrow\dfrac{3}{4\left(x-5\right)}+\dfrac{15}{2\left(25-x^2\right)}+\dfrac{7}{6\left(x+5\right)}=0\\ \Rightarrow\dfrac{3}{4\left(x-5\right)}-\dfrac{15}{2\left(x+5\right)\left(x-5\right)}+\dfrac{7}{6\left(x+5\right)}=0\\ \Rightarrow\dfrac{9\left(x+5\right)}{12\left(x+5\right)\left(x-5\right)}-\dfrac{90}{12\left(x+5\right)\left(x-5\right)}+\dfrac{14\left(x-5\right)}{12\left(x+5\right)\left(x-5\right)}=0\\ \Rightarrow9x+45-90+14x-70=0\\ \Leftrightarrow23x=115\\ \Leftrightarrow x=5\left(KTM\right)\)
Vậy phương trình vô nghiệm
\(\text{c) }\dfrac{x+29}{31}-\dfrac{x+27}{33}=\dfrac{x+17}{43}-\dfrac{x+15}{45}\\ \Leftrightarrow\left(\dfrac{x+29}{31}+1\right)-\left(\dfrac{x+27}{33}+1\right)=\left(\dfrac{x+17}{43}+1\right)-\left(\dfrac{x+15}{45}+1\right)\\ \Leftrightarrow\dfrac{x+60}{31}-\dfrac{x+60}{33}-\dfrac{x+60}{43}+\dfrac{x+60}{45}=0\\ \Leftrightarrow\left(x+60\right)\left(\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\right)=0\\ \Leftrightarrow x+60=0\left(\text{Vì }\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\ne0\right)\\ \Leftrightarrow x=-60\)
Vậy \(x=-60\) là nghiệm của phương trình
giải phương trình
a, \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
b, \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
c, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
a) \(x-\dfrac{\dfrac{x}{2}-\dfrac{3+x}{4}}{2}=\dfrac{2x-\dfrac{10-7x}{3}}{3}-\left(x-1\right)\)
b) \(x^2-6x-2+\dfrac{14}{x^2-6x+7}=0\)
c) \(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\)
d) \(\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}=\dfrac{6}{x^2-9}\)
e) \(\left(1-\dfrac{2x-1}{x+1}\right)^3+6\left(1-\dfrac{2x-1}{x+1}\right)^2=\dfrac{12\left(2x-1\right)}{x+1}-20\)
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
23) \(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}=\dfrac{1}{9}\)
24) \(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{8}\)
25) \(\dfrac{x^2+2x+2}{x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)
24:
\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=8\left(x+6\right)-8\left(x+2\right)\)
\(\Leftrightarrow x^2+8x+12=8x+48-8x-16=32\)
=>(x+10)(x-2)=0
=>x=-10 hoặc x=2
25: \(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)
\(\Leftrightarrow x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)
\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{4}{x+4}=\dfrac{2}{x+2}+\dfrac{3}{x+3}\)
\(\Leftrightarrow x+5=0\)
hay x=-5
Giải Pt \(\dfrac{14}{20-6x-2x^2}+\dfrac{x^2+4x}{x^2+5x}-\dfrac{x+3}{2-x}+3=0\)
\(\Leftrightarrow\dfrac{-7}{x^2+3x-10}+\dfrac{x+4}{x+5}+\dfrac{x+3}{x-2}+3=0\)
\(\Leftrightarrow-7+x^2+2x-8+x^2+8x+15+3x^2+9x-30=0\)
\(\Leftrightarrow5x^2+19x-30=0\)
hay \(x\in\left\{\dfrac{6}{5}\right\}\)
Tìm x:
1) \(\dfrac{1,2}{30}\)\(=\dfrac{3x+4}{50}\)
2) \(\dfrac{x-1}{x-5}\)\(=\dfrac{6}{7}\)
3) \(\dfrac{x-1}{3}\)\(=\dfrac{x+3}{5}\)
4) \(\dfrac{3}{7}\)\(=\dfrac{2x+1}{3x+5}\)
5) \(\dfrac{2x+3}{3x+1}\)\(=\dfrac{3}{4}\)
6) \(\dfrac{2x+3}{6}\)\(=\dfrac{7x-3}{15}\)
7) \(\dfrac{6x-5}{-7}\)\(=\dfrac{5x-3}{-5}\)
8) \(\dfrac{x+1}{x-2}\)\(=\dfrac{3}{4}\)
9) \(\dfrac{2x-3}{x+1}\)\(=\dfrac{4}{7}\)
10) \(\dfrac{2x+3}{7}\)\(=\dfrac{4x-1}{15}\)
11) \(\dfrac{2x+3}{24}\)\(=\dfrac{3x-1}{32}\)
12) \(\dfrac{2x+4}{7}\)\(=\dfrac{4x-2}{15}\)
13) \(\dfrac{11x-2}{7x+5}\)\(=\dfrac{11}{8}\)
14) \(\dfrac{12-7x}{-13}\)\(=\dfrac{4-3x}{-5}\)
15) \(\dfrac{52}{2x-1}\)\(=\dfrac{13}{30}\)
1: \(\Leftrightarrow3x+4=2\)
=>3x=-2
=>x=-2/3
2: \(\Leftrightarrow7x-7=6x-30\)
=>x=-23
3: =>\(5x-5=3x+9\)
=>2x=14
=>x=7
4: =>9x+15=14x+7
=>-5x=-8
=>x=8/5