Những câu hỏi liên quan
ngô thanh thanh tú
Xem chi tiết
Nguyễn Thanh Liêm
4 tháng 9 2017 lúc 20:54

hi

Bình luận (0)
Mai Thị Thanh
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 8 2021 lúc 16:07

Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)

BĐT trở thành:

\(\dfrac{y^2}{xz}+\dfrac{z^2}{xy}+\dfrac{x^2}{yz}\ge\dfrac{3}{2}\left(\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}-1\right)\)

\(\Leftrightarrow2\left(x^3+y^3+z^3\right)+3xyz\ge3x^2y+3y^2z+3z^2x\)

Áp dụng BĐT Schur ta có:

\(x^3+y^3+z^3+3xyz\ge x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\)

\(\Rightarrow VT\ge\left(x^3+xy^2\right)+\left(y^3+yz^2\right)+\left(z^3+zx^2\right)+x^2y+y^2z+z^2x\ge3\left(x^2y+y^2z+z^2x\right)\)

Bình luận (0)
Bùi Bảo linh
Xem chi tiết
yeens
Xem chi tiết
trần lê tuyết mai
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2022 lúc 16:08

\(VT=\dfrac{a}{b+c}+1+\dfrac{4b}{c+a}+4+\dfrac{9c}{a+b}+9-14\)

\(VT=\dfrac{a+b+c}{b+c}+\dfrac{4\left(a+b+c\right)}{c+a}+\dfrac{9\left(a+b+c\right)}{a+b}-14\)

\(VT=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{4}{c+a}+\dfrac{9}{a+b}\right)-14\)

\(VT\ge\left(a+b+c\right).\dfrac{\left(1+2+3\right)^2}{b+c+c+a+a+b}-14=4\) 

Dấu "=" không xảy ra nên \(VT>4\) (đpcm)

Bình luận (0)
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2021 lúc 0:13

\(\Leftrightarrow\dfrac{a}{\sqrt{4b^2+bc+4c^2}}+\dfrac{b}{\sqrt{4c^2+ca+4a^2}}+\dfrac{c}{\sqrt{4a^2+ab+4b^2}}\ge1\)

Ta có:

\(\sum\left(\dfrac{a}{\sqrt{4b^2+bc+4c^2}}\right)^2\sum a\left(4b^2+bc+4c^2\right)\ge\left(a+b+c\right)^3\)

Nên ta chỉ cần chứng minh:

\(\dfrac{\left(a+b+c\right)^3}{a\left(4b^2+bc+4c^2\right)+b\left(4c^2+ac+4a^2\right)+c\left(4a^2+ab+4b^2\right)}\ge1\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^3}{4a\left(b^2+c^2\right)+4b\left(c^2+a^2\right)+4c\left(a^2+b^2\right)+3abc}\ge1\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\) (đúng theo Schur bậc 3)

Bình luận (0)
Nguyễn Văn Phúc Lâm
Xem chi tiết
Akai Haruma
26 tháng 12 2023 lúc 17:17

Lời giải:

Với $a,b,c>0$ ta có:

$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}{a+b+c}=1(*)$

Mặt khác:
Xét hiệu: $\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c>0$

$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$

Tương tự ta cũng có: $\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{a+b+c}$

Cộng lại ta được: $M< \frac{a+c+b+a+c+b}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2(**)$

Từ $(*); (**)\Rightarrow 1< M< 2$ nên $M$ không là số nguyên.

Bình luận (0)
ONLINE SWORD ART
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 10 2021 lúc 20:18

Sửa \(\le\) thành \(\ge\) nha bạn

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

Ta có \(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Tương tự: \(\left\{{}\begin{matrix}\dfrac{b^2}{b+ca}=\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}\\\dfrac{c^2}{c+ba}=\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\end{matrix}\right.\)

Áp dụng BĐT cosi:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3}{4}a\)

\(\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3}{4}b\)

\(\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{c^3}{64}}=\dfrac{3}{4}c\)

Cộng VTV:

\(\Leftrightarrow VT+\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\\ \Leftrightarrow VT\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{2\left(a+b+c\right)}{8}\\ \Leftrightarrow VT\ge\dfrac{a+b+c}{4}\)

Dấu \("="\Leftrightarrow a=b=c=3\)

Bình luận (0)