Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khaanh Chii
Xem chi tiết
mikazuki kogitsunemaru
Xem chi tiết
๛Ňɠũ Vị Čáէツ
31 tháng 5 2018 lúc 9:35

Xét các số:

 2,22 , 222,..., 2222...222

                        14 chữ số 2

1 số  tự nhiên khi chia cho 13 sẽ có thể có các số dư là 0,1, 2, 3,..., 12 ( 13  số dư ) mà  dãy trên có 14 số nên theo nguyên lí Diricle sẽ có ít nhất 2 số có cùng số dư khi chia cho 13

 Giả sử 2 số đó là

     222...22             và            222...22

   m chữ số 2                        n chữ số 2                  ( m, n thuộc N*,   0<m<n \(\le\)20 )

=>      222...22          \(_-\)222...22        \(⋮\)13

      n chữ số 2             m chữ số 2

<=>   222...222 000....00            \(⋮\)    13

n-m chữ số 2      m chữ số 0

<=>  222..222      x    10m      \(⋮\)13

   n-m chữ số 2

       Mà ( 10m, 13 ) = 1

=> 222....2222          \(⋮\)13

n-m chữ số 2

          Vậy tồn tại 1 số tự nhiên gồm toàn chữ số 2 là bội của 13.

                      Hok tốt

Hồ Hữu Phong
27 tháng 6 2023 lúc 14:47

Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.

Biokgnbnb
Xem chi tiết
Trương Hoàng Nhật
25 tháng 1 2015 lúc 9:38

Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.

Hồ Hữu Phong
27 tháng 6 2023 lúc 14:47

Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.

Linh LInh
Xem chi tiết
Đỗ Đức Tuyển
Xem chi tiết
WANNAONE 123
Xem chi tiết
T.Anh 2K7(siêu quậy)(тoá...
22 tháng 2 2020 lúc 11:12

Xét 31 số

7

77

777

...

7777....7777

31 chữ số 7

Nếu có 1 trong 31 số chia hết cho 31 thì bài toán được chứng minh

Nếu ko có số nào chia hết cho 31 thì ta có:Mọi số tự nhiên ko chia hết cho 31 thì có 30 trường hợp dư là 1;2;3;4;...;30 có 30 trường hợp

Mà số 31 số nên theo nguyên lý Đi rích-lê thì có ít nhất 2 số có cùng số dư khi chia cho 31

Gọi 2 số đó là:77777.....77777                       77777............77777                \(\left(1\le n< m\le31\right)\)

                    n chữ số                                 m chữ số

\(\Rightarrow777...7777-7777....777⋮31\)

     m chữ số            n chữ số

\(\Rightarrow777.....777.10^n⋮31\)

   m-n chữ số

Mà (10^n,31)=1

\(\Rightarrow7777.....77777⋮31\)

    m-n chứ số

Ró ràng m-n>0 vì m>n

Suy ra điều phải chứng minh

Khách vãng lai đã xóa
Đinh Thị Thùy Linh
Xem chi tiết
shirayuki hime cure prin...
21 tháng 12 2016 lúc 13:17

mik nghĩ là : 222222222222

Ngô Bá Sơn
30 tháng 12 2016 lúc 11:55

Xét dãy số:2,22,222,...,22...22(131 chữ số 2) có 131 số.

Nếu có số chia hết cho 131 thì bài toán được chứng minh.

Nếu ko có số nào chia hết cho 131 thì có 131 phép chia có số dư thuộc{1;2;3;...;130}.Có nhiều nhất 130 số dư khác nhau.

Suy ra tồn tại 2 phép chia có số dư bằng nhau khi chia cho 131. Khi đó có hiệu của chúng chia hết cho 131.

Ta giả sử 2 số đó là :

222...2(m chữ số 2) và 222...2( n chữ số 2).   (m>n; m,n thuộc{1;2;3;..;131}.

Và 22...2(m chữ số 2)- 22..2( n chữ số 2)  chia hết cho 131.

Suy ra 22...20000...0( m - n chữ số 2 và n chữ số 0) chia hết cho 131.

Suy ra 222..2(m - n chữ số 2)× 10^n  Chia hết cho 131.

Mà 10^ n và 131 là 2 số nguyên tố cùng nhau.

Suy ra 222...2( m -n chữ số 2) chia hết cho 131.

 Vậy luôn tồn tại 1 bội của 131 gồm toàn chữ số 2.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 5 2017 lúc 15:39

Xét 1 A , mẫu A không chứa thừa số nguyên tố 2 và 5 nên  1 A viết được dưới dạng số thập phân vô hạn tuần hoàn đơn.

1 A = a 1 a 2 ... a n ¯ 99...9 ⏟ n ⇒ 99...9 ⏟ n = A . a 1 a 2 ... a n ¯ ⇒ 99...9 ⏟ n ⋮ A .

Nguyễn Bá Dương
27 tháng 7 2021 lúc 14:54

bạn lấy đâu 1/A người ta cho A thôi mà

Khách vãng lai đã xóa
Khoa Khoa Đỗ
Xem chi tiết