Tìm x biết : \(\sqrt{x+5}\) = \(1+\sqrt{x}\)
Tìm x để A>B \(2\sqrt{x}+5\) biết \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\) và \(B=\dfrac{1}{\sqrt{x}-5}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >25\end{matrix}\right.\)
\(A>B\left(2\sqrt{x}+5\right)\)
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}-5}>=\dfrac{2\sqrt{x}+5}{\sqrt{x}-5}\)
=>\(\dfrac{\sqrt{x}+2-2\sqrt{x}-5}{\sqrt{x}-5}>=0\)
=>\(\dfrac{-\sqrt{x}-3}{\sqrt{x}-5}>=0\)
=>\(\sqrt{x}-5< 0\)
=>\(\sqrt{x}< 5\)
=>0<=x<25
bài 1: tìm x, biết:
\(\sqrt{8x}-\sqrt{200x}+5\sqrt{x}=-20\)
\(3\sqrt{5x}-\sqrt{75x}+4\sqrt{x}=10\)
Lời giải:
a. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+5\sqrt{x}=-20$
$\Leftrightarrow 5\sqrt{x}-8\sqrt{2x}=-20$
$\Leftrightarrow \sqrt{x}(5-8\sqrt{2})=-20$
$\Leftrightarrow \sqrt{x}=\frac{20}{8\sqrt{2}-5}$
$\Rightarrow x=(\frac{20}{8\sqrt{2}-5})^2$
b. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{5x}-5\sqrt{3x}+4\sqrt{x}=10$
$\Leftrightarrow \sqrt{x}(3\sqrt{5}-5\sqrt{3}+4)=10$
$\Leftrightarrow \sqrt{x}=\frac{10}{3\sqrt{5}-5\sqrt{3}+4}$
$\Rightarrow x=(\frac{10}{3\sqrt{5}-5\sqrt{3}+4})^2$
Tìm x biết \(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)
tìm x biết: \(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)
ĐKXĐ : \(x\ge1\)
\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)
\(\Leftrightarrow\)\(\sqrt{x-1+4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow\)\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)
\(\Leftrightarrow\)\(\left|\sqrt{x-1}+2\right|+\left|\sqrt{x-1}-3\right|=5\)
\(\Leftrightarrow\)\(\sqrt{x-1}+\left|\sqrt{x-1}-3\right|=3\)
+) Với \(\sqrt{x-1}-3\ge0\)\(\Leftrightarrow\)\(x\ge10\) ta có :
\(\sqrt{x-1}+\sqrt{x-1}-3=3\)
\(\Leftrightarrow\)\(2\sqrt{x-1}=6\)
\(\Leftrightarrow\)\(\sqrt{x-1}=3\)
\(\Leftrightarrow\)\(x-1=9\)
\(\Leftrightarrow\)\(x=10\) ( thỏa mãn )
+) Với \(\sqrt{x-1}-3< 0\)\(\Leftrightarrow\)\(x< 10\) ta có :
\(\sqrt{x-1}-\sqrt{x-1}+3=3\)
\(\Leftrightarrow\)\(3=3\) ( thõa mãn với mọi \(x< 10\) )
Vậy \(x\le10\)
Chúc bạn học tốt ~
PS : mới lớp 8, sai thì thôi nhé :v
Câu 2: Tìm x biết:
a. \(\sqrt{x-1}=2\)
b. \(\sqrt{3x+1}=\sqrt{4x-3}\)
c. \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d. \(\sqrt{x^2-4x+4}=\sqrt{6+2\sqrt{5}}\)
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
Cho: \(A=\dfrac{3\sqrt{x}}{-x-5\sqrt{x}-1}\)
a) Tìm x biết \(A=\dfrac{2}{3}\)
b) Tìm A biết \(x=7-2\sqrt{6}\)
c) Tìm GTNN của A
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
P = \(\left(\dfrac{1-\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{1-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-3\sqrt{x}+2}\right):\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{1-\sqrt{x}}{x-2\sqrt{x}}\right)\)
a) Rút gọn P
b) Tính giá trị của P biết x = 6 - \(2\sqrt{5}\)
c) Tìm giá trị lớn nhất của \(\dfrac{P}{\sqrt{x}}\)
Mình đang cần gấp. Làm chi tiết giúp mình nhé.
\(a,P=\dfrac{-x+2\sqrt{x}-1+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}:\dfrac{2\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ P=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\\ \Rightarrow P=\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{5-\sqrt{5}}{5}\\ c,\dfrac{P}{\sqrt{x}}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{1}{\sqrt{x}-1}\le\dfrac{1}{0-1}=-1\)
Vậy \(\left(\dfrac{P}{\sqrt{x}}\right)_{max}=-1\Leftrightarrow x=0\)
bài 1
a,tìm đkxđ của x để biểu thức
A=\(\sqrt{2x}+2\sqrt{x+5}\) xác định
b,rút gọn biểu thức B=\(\left(\sqrt{3-1^2}\right)+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\)
bài 3 cho x ≥ 0,x≠1,x≠9 tìm x biết
\(\left(1-\dfrac{x+\sqrt{x}}{\sqrt{1+x}}\right).\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{2}{\sqrt{x-3}}\right)-2\)
\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)
Câu 3: Tìm x biết:
a. \(\sqrt{\left(2x-1\right)^2}\)= x + 1
b. \(\sqrt{x+3}=5\)
c. \(\sqrt{x+2}=\sqrt{7}\)
b)\(\sqrt{x+3}=\sqrt{25}\)
x+3=5
x=2
Vậy x=2
tìm x biết
\(\dfrac{-3\sqrt{x}-5}{\sqrt{x}+1}=0\)
ĐKXĐ: \(x\ge0\)
\(\dfrac{-3\sqrt{x}-5}{\sqrt{x}+1}=0\)
\(\Leftrightarrow-3\sqrt{x}-5=0\)
\(\Leftrightarrow\sqrt{x}=-\dfrac{5}{3}< 0\)
\(\Rightarrow\) Không tồn tại x thỏa mãn