tìm x biết : \(\left(x+2\right)^2=81\)
Tìm x biết \(\left|x-30\right|-6001=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
Dễ thấy (\(\frac{3}{4}\)-81); (\(\frac{3^2}{5}\)-81); (\(\frac{3^3}{6}\)-81);... (\(\frac{3^{2007}}{2010}\)-81) có dạng (\(\frac{3^x}{3+x}\)-81) và x\(\varepsilon\){1;2;3;...2007}.
Nếu x=6 thì \(\frac{3^x}{3+x}\)-81=\(\frac{3^6}{3+6}\)-81=0
=> (\(\frac{3}{4}\)-81) (\(\frac{3}{4}\)-81)(\(\frac{3^3}{6}\)-81)...(\(\frac{3^6}{3+6}\)-81)...(\(\frac{3^{2007}}{2010}\)-81)=0
Mà |x-30|-6001=(\(\frac{3}{4}\)-81) (\(\frac{3}{4}\)-81)(\(\frac{3^3}{6}\)-81)...(\(\frac{3^6}{3+6}\)-81)...(\(\frac{3^{2007}}{2010}\)-81)
=>|x-30|-6001=0
=>|x-30|=6001
=>x-30=6001 hoặc x-30=-6001
=>x=6031 hoặc x=-5971
-------------------The end----------------
\(\text{|x - 30| - 6001 = }\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow\text{ |x - 30| - 6001 = }\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^6}{9}-3^4\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow\left|x-30\right|- 6001 = \left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(3^4-3^4\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow|x - 30| - 6001 = \left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...0...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow\text{|x - 30| - 6001 = }0\)
\(\Rightarrow\left|x-30\right|=6001\)
\(\Rightarrow x-30=6001\)hoặc \(x-30=-6001\)
\(\Rightarrow x=6031\)hoặc\(x=-5971\)
Vậy: x= 6031 hoặc x= -5971
(Nói thật thì mình mới lớp 7, đây có phải của lớp 8 không?)
Tìm x ∈ N biết :
a) \(8< 2^x\le2^9.2^{-5}\)
b)\(27< 81^3:3^x< 243\)
c)\(\left(\dfrac{2}{5}\right)^x>\left(\dfrac{5}{2}\right)^{-3}.\left(\dfrac{-3}{5}\right)^2\)
\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)
cho đa thức \(f\left(x\right)=4\cdot x^2+3x+1\); \(g\left(x\right)=3x^2-2x+1\); \(k\left(x\right)=7\cdot x^2-35x+42\)
a) tính f(x)-g(x)=h(x)
b) tính nghiệm của h(x) và k(x)
c) tìm gia trị của đa thức h(x) biết:
\(\left(x^2-9\right)^{2021}=\left(\frac{3}{4}-81\right)\cdot\left(\frac{3^2}{5}-81\right)^2\cdot\left(\frac{3^2}{6}-81\right)^3\cdot\cdot\cdot\left(\frac{3^{2020}}{2023}-81\right)^{2020}\)
a, Ta có : \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay
\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x\)
b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0
Đặt \(k\left(x\right)=7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2
xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là
\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)
bị sai mỗi thế thôi ạ mọi người giúp em với ạ
là \(\left(\frac{3^3}{6}-81\right)^3\)ạ
1.tìm x biết:
a) \(2x-17=3^5:3^2\)
b) \(\left(19-x\right).2-20=2^3\)
c) \(2.\left(1+3+3^2+3^3+...+3^x\right)+1=81\)
a) 2x - 17 = 35 : 32
2x - 17 = 35 - 2
2x - 17 = 33
= 27
2x = 27 +17
2x = 44
x = 44 :2
vậy x = 22
b, ( 19 - x ) .2 - 20 = 23
= 8
( 19 - x ) .2 = 8 + 20
( 19 - x ) .2 = 28
19 - x = 28 :2
19 - x = 14
x = 19 - 14
vậy x = 5
a)2x-17=243:9
2x-17=27
2x=27+17
2x=44
vậy x=44
b)(19-x).2-20=8
(19-x).2=20+8=28
19-x=28:2
19-x=14
x=19-14
x=5
vậy x=5
c)Bạn tách 3^2 thành 3^1.3^2 nhá . Tương tự tách các phần rồi rút gọn là xong .mik nhắn trên máy tính nó khó ko nhanh được ý ạ bạn thông ca,r
CHUC BAN HOC TOT
tìm x biết
\(\left(x-2\right)^2=81\)
\(\left(x-2\right)^2=81\)\(\Rightarrow\orbr{\begin{cases}x-2=9\\x-2=-9\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=-7\end{cases}}}\)
Ta có: (x-2)2 =81
<=> (x-2)2 =92
<=> x-2 =9
<=> x =9+2
<=> x = 11
Ta có:\(\left(x-2\right)^2=81\)
\(\left(x-2\right)^2=9^2=\left(-9\right)^2\)
Cái này nên dùng dấu ngoặc nhọn
\(\Rightarrow\hept{\begin{cases}x-2=9\\x-2=-9\end{cases}\Rightarrow}\hept{\begin{cases}x=11\\x=-7\end{cases}}\)
Vậy x=11;-7
\(Bài\) \(2:\) \(Tìm\) \(x:\)
b) \(\left(5-x\right)^3+27=0\)
d) \(\left(x^2-1\right).\left(x+7\right)=0\)
f) \(\left(x^2+81\right).\left(x-7\right).\left(x^2-2\right)=0\)
b) Ta có: \(\left(5-x\right)^3+27=0\)
\(\Leftrightarrow\left(5-x\right)^3=-27\)
\(\Leftrightarrow5-x=-3\)
hay x=8
d) Ta có: \(\left(x^2-1\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=-7\end{matrix}\right.\)
f) Ta có: \(\left(x^2+81\right)\left(x-7\right)\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
tìm x biết:
a) \(5^x.\left(5^3\right)^2=625\)
b)\(\left(\dfrac{12}{15}\right)^x=\left(\dfrac{5}{3}\right)^{-5}-\left(-\dfrac{3}{5}\right)^4\)
c)\(\left(-\dfrac{3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
d)\(172x^2-7^9:98^3=2^{-3}\)
tìm số nguyên x biết: \(\dfrac{\sqrt{49}}{6}< \left|x-\dfrac{2}{3}\right|< -\dfrac{26}{\sqrt{81}}\)
Do \(\left|x-\dfrac{2}{3}\right|\ge0;\forall x\)
Mà \(-\dfrac{26}{\sqrt{81}}< 0\)
\(\Rightarrow\) Không tồn tại x để \(\left|x-\dfrac{2}{3}\right|< -\dfrac{26}{\sqrt{81}}\)
Hay ko tồn tại số nguyên x thỏa mãn đề bài
1) Cho đa thức \(f\left(x\right)=x^{14}-14.x^{13}+14.x^{12}-...+13.x^2-14.x+14\) Tính f(13)
2) Tính : \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)...\left(\dfrac{3^{2000}}{2003}-81\right)\)
Bài 2:
x=13 nên x+1=14
\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)
\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)
=14-x=1
x=13 nên x+1=14
f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14
=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14
=14-x=1