Tìm GTNN
D= x(x+6)
Tìm GTLN, GTNN (nếu có) của biểu thức D=(x-1).(x+3).(x+2).(x+6)
Ta có : D = (x - 1).(x + 3).(x + 2).(x + 6)
=> D = [(x - 1)(x + 6)].[(x + 3).(x + 2)]
=> D = (x2 + 5x - 6) . (x2 + 5x + 6)
=> D = (x2 + 5x)2 - 36
=> D = [x(x + 5)]2 - 36
Mà : [x(x + 5)]2 \(\ge0\forall x\)
Suy ra : D = [x(x + 5)]2 - 36 \(\ge-36\forall x\)
Vậy Dmin = -36 , dấu "=" xẩy ra khi và chỉ khi x = 0 hoặc -5
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
tìm GTNN của D = 6 tất cả phần /x/-3 vs x là số nguyên
Ta có :
\(\left|x\right|\ge0\)
\(\Leftrightarrow\)\(\left|x\right|-3\ge-3\)
\(\Leftrightarrow\)\(D=\frac{6}{\left|x\right|-3}\ge\frac{6}{-3}=-2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x\right|=0\)
\(\Leftrightarrow\)\(x=0\)
Vậy GTNN của \(D\) là \(-2\) khi \(x=0\)
Chúc bạn học tốt ~
Tìm GTNN của biểu thức D = |x2 + x + 3| + |x2 + x - 6|
ta có /x2+x+3/ > hoặc =0;/x2+x-6/>hoặc=0 nên
/x2+x+3/+/x2+x-6/>hoặc =0
vậy GTNN của D là 0 tại
BÀI 5 : CHO x-y=3 tìm giá trị của B=|x-6|+|y+1|
BÀI 6: Cho x-y=2 tìm gtnn của biểu thức C=|2x+1|+|2y+1|
BÀI 7: Cho 2x+y=3 tìm gtnn của biểu thức D=|2x+3|+|y+2|+2
tìm GTNN của \(D=\frac{x^6+512}{x^2+8}\)
Tìm GTNN:
a) A= | x+5|+2-x
b) B= |x+1|+|x-5|
c)C=|x-2|+|x+6|+5
d) D=|2x-4|+|2x+5|
Tìm GTNN, biết:
\(D=\frac{x^6+512}{x^2+8}\)
\(D=\frac{\left(x^2\right)^3+8^3}{x^2+8}=\frac{\left(x^2+8\right)\left(x^4-8x^2+64\right)}{x^2+8}\)
\(=x^4-8x^2+64=\left(x^2-4\right)^2+48\ge48\left(\forall x\right)\)
Dấu "=" xảy ra khi \(x^2-4=0\Leftrightarrow x=\pm2\)
Vậy \(D_{min}=48\Leftrightarrow x=\pm2\)
tìm GTNN của BT :
\(D=\left(x^2+x^4+x^6+...+x^{98}+x^{100}+2\right)^{2015}+2^{2015}\)
Vì x^2;x^4;x^6;......;x^100 đều >= 0 => x^2+x^4+....+x^100 + 2 >= 2
=> D >= 2^2015 + 2^2015 = 2.2^2015 = 2^2016
Dấu "=" xảy ra <=> x=0
Vậy GTNN của D = 2^2016 <=> x=0
Tk mk nha