cho x,y,z là 3 số thực ko âm thỏa mãn x+y+z=1
cm x+2y+z≥4(1−x)(1−y)(1−z)
cho x,y,z là 3 số thực ko âm thỏa mãn x+y+z=1
cm x+2y+z\(\ge4\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
Chứng minh $x+2y+z\geq 4(1-x)(1-y)(1-z)$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Cho x,y,z là ba số thực không âm thỏa mãn x + y + z =1
Chứng minh x + 2y + z \(\ge\)4( 1 - x )( 1 - y )( 1 - z )
CMR a+2b+c >= 4(1-a)(1-b)(1-c) - Bất đẳng thức và cực trị - Diễn đàn Toán học
bạn có thể giải giúp mình bài toán nay ko. giúp mình nha
Cho x, y, z là các số thực không âm thỏa mãn x+y+z =1
tìm GTLN của biểu thức:
P = \(\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
\(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+x+1\le x^2+2x+1\\2y^2+y+1\le y^2+2y+1\\2z^2+z+1\le z^2+2z+1\end{matrix}\right.\)
\(\Rightarrow P\le\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}=x+y+z+3=4\)
\(P_{max}=4\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị
Cho x, y, z là các số thực không âm thỏa mãn x + y + z = 3. Chứng minh bất đẳng thức: (1 - x)^3 + (1 - y)^3 + (1 - z)^3 ≤ 3/4
có: \(x\left(2x-3\right)^2\ge0\Leftrightarrow4x^3-12x^2+9x\ge0\Leftrightarrow4x^3-12x^2+12x-4\ge3x-4\)
\(\Leftrightarrow4\left(x-1\right)^3\ge3x-4\)
\(\Leftrightarrow\left(1-x\right)^3\le1-\frac{3}{4}x\).
tương tự và cộng lại ta có ngay đpcm.
Dấu = xảy ra khi 2 số bằng 1,5; 1 số bằng 0
Cho các số x,y,z không âm thỏa mãn x+y+z=1. CMR: x+2y+z\(\ge\)4(1-x)(1-y)(1-z)
Đặt \(a=\frac{x+y}{2};b=\frac{y+z}{2};c=\frac{z+x}{2}\)
Thì \(\Rightarrow a+b+c=\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{x+y+y+z+z+x}{2}=\)\(x+y+z=1\)
Bất đẳng thức đã tương đương với \(x+2y+z\ge4\left(x+y\right).\left(y+z\right).\left(z+x\right)\)
\(\Rightarrow a+b\ge16abc\)
Ta có: \(\left(a+b\right).\left(a+b+c\right)^2\ge4\left(a+b\right).4c\left(a+b\right)\ge16abc\left(đpcm\right).\)
Ta có:
\(x\ge0,y\ge0,z\ge0\) và \(x+y+z=1\)
\(\Rightarrow0\le y\le1\)
Ta lại có:
\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-y\right)\left(1-z\right)\)
Aps dụng BĐT: \(\left(a+b\right)^2\ge4ab\)
Ta được: \(4\left(y+z\right)\left(1-z\right)\le\left(1+y\right)^2\)
Nên: \(4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)\)
\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)\left(1-y\right)^2\)
Mà \(\left(1-y\right)^2\le1\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le1+y\)
\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le x+y+z+y\)
\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le x+2y+z\left(đpcm\right)\)
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Áp dụng bđt phụ \(\dfrac{1}{A+B}\le\dfrac{1}{4}\left(\dfrac{1}{A}+\dfrac{1}{B}\right)\forall A,B>0\)
\(\dfrac{1}{2x+y+z}=\dfrac{1}{\left(x+y\right)+\left(x+z\right)}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)\) Tương tự: \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(\Rightarrow\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=1\)
Dấu bằng xảy ra \(\Leftrightarrow x=y=z=\dfrac{3}{4}\)
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
\(\dfrac{1}{x+x+y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Tương tự: \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)
Cộng vế với vế:
\(VT\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{3}{4}\)
Cho x,y,z là 3 số thực thỏa mãn xyz=1
Cm 1/(x+y+1) +1/(y+z+1) +1/(x+z+1) <=1
Cho 3 số thực không âm x ,y ,z thỏa mãn x + y + z = 2 . Chứng minh rằng : x + 2y + z >= (2 - x)(2 - y)(2 - z)
Bất đẳng thức cần chứng minh tương đương:
\(y+2\ge\left(2-x\right)\left(2-z\right)\left(2-y\right)\).
Theo bất đẳng thức AM - GM: \(\left(2-x\right)\left(2-z\right)\le\dfrac{\left(4-x-z\right)^2}{4}=\dfrac{\left(2-y\right)^2}{4}\).
Do đó ta chỉ cần chứng minh:
\(y+2\ge\dfrac{\left(2-y\right)^3}{4}\).
Mặt khác, bđt trên tương đương: \(\dfrac{y\left[\left(y-3\right)^2+7\right]}{4}\ge0\) (luôn đúng).
Do đó bđt ban đầu cũng đúng.
Đẳng thức xảy ra khi y = 0; x = z = 1.