C= (1+\(\dfrac{x}{y}\)) . (1+\(\dfrac{x}{z}\)) (1+\(\dfrac{z}{x}\)) biết x+y+z =0
Đặt $ X = a - b; Y = b - c; Z = c - a \Rightarrow X + Y + Z = 0$
Với X + Y + Z = 0, ta chứng minh được :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$
Thật vậy, ta có :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + \dfrac{2}{XY} + \dfrac{2}{YZ} + \dfrac{2}{ZX}$
$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + 2.\dfrac{X + Y + Z}{XYZ}$
$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$ ( do X + Y + Z = 0)
$ \Rightarrow \sqrt{\dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}} = \sqrt{( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2} = |\dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z}|$
Suy ra : $ \sqrt{\dfrac{1}{(a - b)^2} + \dfrac{1}{(b - c)^2} +\dfrac{1}{( c - a)^2}} = |\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$
Do a, b, c là số hữu tỷ nên $|\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$ cũng là số hữu tỷ. Ta có điều phải chứng minh.
Cho x,y,z khác 0 và x+y+z khác 0. CM nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\) thì \(\dfrac{1}{x^{2017}}+\dfrac{1}{y^{2017}}+\dfrac{1}{z^{2017}}=\dfrac{1}{x^{2017}+y^{2017}+z^{2017}}\)
Chào bạn
bạn nhân chéo lên rồi tách ra thì bạn sẽ có
1/x+1/y+1/z=1/x+y+z tương đương với (x+y)(y+z)(x+z)=0
Đến đây thì dễ rồi
tìm x,y,z khác 0 biết \(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)
tìm x,y,z khác 0 biết \(\dfrac{x}{y+z+1}=\dfrac{ỹ}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{1}=\dfrac{x+y+z}{\left(y+z+1\right)+\left(x+z+1\right)+\left(x+y-2\right)}\)
\(=\dfrac{x+y+z}{2x+2y+2z}\)
\(TH1:x+y+z=0\)
⇒ \(\dfrac{x+y+z}{1}=0\)
⇒ \(x=y=z=0\)(loại vì trái với điều kiện đề bài )
\(TH2:z+y+z\)≠ 0
⇒ \(\dfrac{x+y+z}{2x+2y+2z}=\dfrac{x+y+z}{2.\left(x+y+z\right)}=\dfrac{1}{2}\)
Vậy \(x+y+z=\dfrac{1}{2}\)
\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\) ⇒ \(2x=y+z+1\)⇒\(2x=y+z+2\left(x+y+z\right)=2x+3y+3z\)
⇒ \(3y+3z=0\) ⇒ \(y+z=0\) ⇒ \(2x=1\) ⇒ \(x=\dfrac{1}{2}\)
\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\) ⇒ \(2y=x+z+1=x+z+2\left(x+y+z\right)=2y+3x+3z\)
⇒ \(3x+3z=0\) ⇒ \(x+z=0\) ⇒ \(2y=1\) ⇒ \(y=\dfrac{1}{2}\)
\(x+z=0\) ; \(x=\dfrac{1}{2}\)
⇒ \(z=0-\dfrac{1}{2}=\dfrac{-1}{2}\)
Vậy \(x=\dfrac{1}{2}\) ; \(y=\dfrac{1}{2}\) ; \(z=\dfrac{-1}{2}\)
Cho x, y, z khác 0 và x + y + z khác 0. CMR:
Nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\) thì \(\dfrac{1}{x^{2007}}+\dfrac{1}{y^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{x^{2007}+y^{2007}+z^{2007}}\)
Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{xy+yz+xz}{xyz}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+3xyz-xyz=0\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz=0\)
\(\Leftrightarrow x^2y+xy^2+x^2z+xyz+y^2z+yz^2+xz^2+xyz=0\)
\(\Leftrightarrow x\left(xy+y^2+xz+yz\right)+z\left(y^2+yz+xz+xy\right)=0\)
\(\Leftrightarrow x\left[y\left(x+y\right)+z\left(x+y\right)\right]+z\left[y\left(y+z\right)+x\left(y+z\right)\right]=0\)
\(\Leftrightarrow x\left(x+y\right)\left(y+z\right)+z\left(y+z\right)\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
* x = -y
\(\dfrac{1}{x^{2007}}+\dfrac{1}{y^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{x^{2007}}-\dfrac{1}{x^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{z^{2007}}\)(*)
\(\dfrac{1}{x^{2007}+y^{2007}+z^{2007}}=\dfrac{1}{x^{2007}-x^{2007}+z^{2007}}=\dfrac{1}{z^{2007}}\)(*)
Từ (*) và (**) \(\Rightarrow\) đpcm
Tương tự xét y = -z và z = -x
Vậy nếu x, y, z khác 0 và x + y +z khác 0 thì \(\dfrac{1}{x^{2007}}+\dfrac{1}{y^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{x^{2007}+y^{2007}+z^{2007}}\).
cho x , y, z ≠0 thỏa mãn \(\dfrac{x+y-z}{z}\)=\(\dfrac{y+z-x}{x}\)=\(\dfrac{z+x-y}{y}\). tính P=(1+\(\dfrac{x}{y}\)).(1 +\(\dfrac{y}{z}\)).(1+\(\dfrac{z}{x}\))
Lời giải:
Nếu $x+y+z=0$ thì:
$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$
$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$
$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$
(thỏa mãn đkđb)
Khi đó:
$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$
$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$
Nếu $x+y+z\neq 0$
Áp dụng TCDTSBN:
$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$
$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:
$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$
Tính \(A=\dfrac{x+y}{z}+\dfrac{x+z}{y}+\dfrac{y+z}{x}\) biết\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)
\(\Rightarrow xy=-yz-xz;yz=-xy-xz;xz=-xy-yz\)
Ta lại có: \(A=\dfrac{x+y}{z}+\dfrac{x+z}{y}+\dfrac{y+z}{x}=\dfrac{x^2+xy}{xz}+\dfrac{z^2+xz}{yz}+\dfrac{y^2+yz}{xy}\)
\(=\dfrac{x^2-yz-xz}{xz}+\dfrac{z^2-xy-yz}{yz}+\dfrac{y^2-xy-xz}{xy}\)
\(=\dfrac{x\left(x-z\right)}{xz}-\dfrac{yz}{xz}+\dfrac{z\left(z-y\right)}{yz}-\dfrac{xy}{yz}+\dfrac{y\left(y-x\right)}{xy}-\dfrac{xz}{xy}\)
\(=\dfrac{x-z}{z}-\dfrac{y}{x}+\dfrac{z-y}{y}-\dfrac{x}{z}+\dfrac{y-x}{x}-\dfrac{z}{y}\)
\(=\dfrac{x-z-x}{z}+\dfrac{z-y-z}{y}+\dfrac{y-x-y}{x}=\dfrac{-z}{z}+\dfrac{-y}{y}+\dfrac{-x}{x}\)
\(=-1-1-1=-3\). Vậy A=-3
Cho x>0, y>0, z>0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Cho x,y,z>0 thỏa mãn x+y+z=1.CMR:\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)
từ đề bài ta có bất đẳng thức cần chứng minh tương đương:
\(3+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)
<=>\(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
ta có \(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{3}{4}+\dfrac{z+y}{4x}+\dfrac{x+z}{4y}+\dfrac{x+y}{4z}=\dfrac{3}{4}+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(đpcm\right)\)Dấu "=" xảy ra khi x=y=z=\(\dfrac{1}{3}\)
CMR: Nếu \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)=1 và\(\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}\)=0 thì\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\)=1