Từ \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{matrix}\right.\)
Và \(C=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
\(=\dfrac{x+y}{y}\cdot\dfrac{y+z}{z}\cdot\dfrac{x+z}{z}\)
\(=\dfrac{-z}{y}\cdot\dfrac{-x}{z}\cdot\dfrac{-y}{z}=-\left(\dfrac{xyz}{xyz}\right)=-1\)
\(C=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{x}\right)\)
\(C=\left(\dfrac{y}{y}+\dfrac{x}{y}\right)\left(\dfrac{z}{z}+\dfrac{x}{z}\right)\left(\dfrac{x}{x}+\dfrac{z}{x}\right)\)
\(C=\left(\dfrac{y+x}{y}\right)\left(\dfrac{z+x}{z}\right)\left(\dfrac{x+z}{x}\right)\)
\(C=\dfrac{\left(y+x\right)\left(z+x\right)\left(x+z\right)}{xyz}\)
Rồi ko bt j nx -.-