Sử dụng lược đồ Horner để phân tích đa thức thành nhân tử:
a, \(3x^4-4x^3+1\)
b, \(x^3-19x-30\)
Sử dụng lược đồ horner để phân tích các đa thức sau thành phân tử:
a) \(f\left(x\right)=x^3-6x^2+11x-6\)
b) \(f\left(x\right)x^3-19x-30\)
c) \(f\left(x\right)=x^3+4x^2+4x+3\)
d) \(f\left(x\right)=3x^4+5x^3-x^2-5x-2\)
Sử dụng lược đồ horner để phân tích các đa thức sau thành phân tử:
a) \(f\left(x\right)=x^3-6x^2+11x-6\)
b) \(f\left(x\right)x^3-19x-30\)
c) \(f\left(x\right)=x^3+4x^2+4x+3\)
d) \(f\left(x\right)=3x^4+5x^3-x^2-5x-2\)
a/ \(f\left(x\right)=x^3-6x^2+11x-6\)
\(=x^3-x^2-5x^2+5x+6x-6\)
\(=x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
b/ \(f\left(x\right)=x^3-19x-30\)
\(=x^3+3x^2-3x^2-9x-10x-30\)
\(=x^2\left(x+3\right)-3x\left(x+3\right)-10\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x-10\right)\)
\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)
c/ \(f\left(x\right)=x^3+4x^2+4x+3\)
\(=x^3+3x^2+x^2+3x+x+3\)
\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+x+1\right)\)
Phân tích đa thức thành nhân tử:
a, \(x^3+3x^2+3x+1-27z^3\)
b, \(x^2-2xy+y^2-xz+yz\)
c, \(x^4+4x^2-5\)
a.
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)
\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)
b.
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c.
\(=x^4-1+4x^2-4\)
\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) Ta có: \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
b) Ta có: \(x^2-2xy+y^2-zx+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c) Ta có: \(x^4+4x^2-5\)
\(=x^4+4x^2+4-9\)
\(=\left(x^2+2\right)^2-3^2\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
Phân tích các đa thức sau thành nhân tử:
a) x²-7x+6
x-3√3x-12√3 b)x2+4x-2
Lời giải:
a.
$x^2-7x+6=(x^2-x)-(6x-6)=x(x-1)-6(x-1)=(x-1)(x-6)$
b.
$x-3\sqrt{3}x-12\sqrt{3}$ không phân tích được thành nhân tử
c.
$x^2+4x-2$ không phân tích được thành nhân tử với các hệ số nguyên.
Câu 2: Phân tích các đa thức sau thành nhân tử:
a) 3x. (x – 2 ) – 4x + 8 b) – 6xy2 + 6x3 + 12x2 + 6x
c) 2x2 + 4x – 30
Phân tích đa thức thành nhân tử:
a) 3x² – 6x
b) x² + 4x – 25y² + 4
c) 2x² – 5x – 3
\(a,3x^2-6x=3x.\left(x-2\right)\\ b,x^2+4x-25y^2+4=\left(x^2+4x+4\right)-25y^2\\ =\left(x+2\right)^2-\left(5y\right)^2\\ =\left(x-5y+2\right).\left(x+5y+2\right)\\ c,2x^2-5x-3\\ =2x^2-6x+x-3\\ =2x.\left(x-3\right)+\left(x-3\right)\\ =\left(2x+1\right).\left(x-3\right)\)
a, = 3x ( x - 2 )
b, = ( x2 + 4x + 4 ) - 25y2
= ( x + 2 )2 - 25y2
= ( x + 2 - 5y ) ( x + 2 + 5y )
c, 2x2 - 5x + 3
= 2x2 - 6x + x + 3
= 2x ( x - 3 ) + ( x - 3 )
= ( x - 3 ) ( 2x + 1 )
Phân tích đa thức thành nhân tử:
a) x - 2y + x^2- 4y^2
b) x^2 - 4x^2y^2 + y^2 + 2xy
c) x^6 - x^4 +2x^3 + 2x^2
d) x^3 + 3x^2 + 3x +1 - 8y^3
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(x+2y+1\right)\)
b) Ta có: \(x^2+2xy+y^2-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)
c) Ta có: \(x^6-x^4+2x^3+2x^2\)
\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)
\(=\left(x+1\right)\left[x^4\left(x-1\right)+2x^2\right]\)
\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(=x^2\left(x+1\right)\cdot\left(x^3-x^2+2\right)\)
d) Ta có: \(x^3+3x^2+3x+1-8y^3\)
\(=\left(x+1\right)^3-\left(2y\right)^3\)
\(=\left(x+1-2y\right)\left[\left(x+1\right)^2+2y\left(x+1\right)+4y^2\right]\)
\(=\left(x-2y+1\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)
Phân tích đa thức thành nhân tử:
a) x - 2y + x^2 - 4y^2
b) x^2 - 4x^2y^2 + y^2 + 2xy
c) x^6 - x^4 + 2x^3 + 2x^2
d) x^3 + 3x^2 + 3x + 1 - 8y^3
a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)
b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(1+x+2y\right)\)
b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
1)Phân tích đa thức thành nhân tử:
a) 11x2-6xy-5y2
b)4x3-16x2+19x-6
2) Tìm x,y biết
a)13x2+y2-16x-6xy+9=0
b)5x2+2y2-4x+6xy+8=0
Bài 1:
a: \(11x^2-6xy-5y^2\)
\(=11x^2-11xy+5xy-5y^2\)
\(=11x\left(x-y\right)+5y\left(x-y\right)\)
\(=\left(x-y\right)\left(11x+5y\right)\)
b: \(4x^3-16x^2+19x-6\)
\(=4x^3-8x^2-8x^2+16x+3x-6\)
\(=\left(x-2\right)\left(4x^2-8x+3\right)\)
\(=\left(x-2\right)\left(2x-1\right)\left(2x-3\right)\)