Cho \(\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)=2006\). Hãy tính tổng a+b
Cho \(\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)=2006\) hãy tính tổng a+b
Cho \(a,b,c\) là các số không âm thoả mãn \(a+b+c=2006\)
Chứng minh rằng :
\(\sqrt{2012a+\dfrac{\left(b-c\right)^2}{2}}\)\(+\)\(\sqrt{2012b+\dfrac{\left(c-a\right)^2}{2}}\)\(+\)\(\sqrt{2012c+\dfrac{\left(a-c\right)^2}{2}}\)≤\(2012\sqrt{2}\)
CM bất đẳng thức sau:
a, Cho a>c , b>c , c>0
CM: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
b, CM
\(\dfrac{2005}{\sqrt{2006}}+\dfrac{2006}{\sqrt{2005}}>\sqrt{2005}+\sqrt{2006}\)
help me!!
a) vì ab > 0 nên chia cả hai vế Bất đẳng thức cho \(\sqrt{ab}\) ta được
\(\sqrt{\dfrac{c\left(a-c\right)}{ab}}+\sqrt{\dfrac{c\left(b-c\right)}{ab}}\le1\)
Áp dụng Bất đẳng thức Cauchy cho hai số
\(\Rightarrow\sqrt{\dfrac{c}{b}\left(\dfrac{a-c}{a}\right)}+\sqrt{\dfrac{c}{a}\left(\dfrac{b-c}{b}\right)}\le\dfrac{1}{2}\left(\dfrac{c}{b}+\dfrac{a-c}{a}\right)+\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{b-c}{b}\right)=1\)
vậy nên ta có đpcm
\(\frac{2005}{\sqrt{2006} }+\frac{2006}{\sqrt{2005} }>\sqrt{2005}+\sqrt{2006} \)
<=>\(2005\sqrt{2005}+2006\sqrt{2006}>2005\sqrt{2006}+2006\sqrt{2005} \)
<=>\(\sqrt{2006}<\sqrt{2005} \)
bài 1: tính
\(\sqrt{4+\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}}\)
Bài 2: cho biểu thức: \(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)=2006\)
Hãy tính tổng: S= x+y
biểu thức dã cho <=> ( x+\(\sqrt{x^2+2006}\) ) (\(x-\sqrt{x^2+2006}\)) (y+\(\sqrt{y^2+2006}\)) =2006 (x-\(\sqrt{x^2+2006}\))
=> - 2006 ( y + \(\sqrt{y^2+2006}\)) = 2006 ( x-\(\sqrt{x^2+2006}\))
=>y + \(\sqrt{y^2+2006}\) = \(\sqrt{x^2+2006}\) - x
=>y = \(\sqrt{x^2+2006}\) - x - \(\sqrt{y^2+2006}\) (1)
TT ta có biểu thức đã cho<=>
\(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)\left(y-\sqrt{y^2+2006}\right)=2006\) (y-\(\sqrt{y^2+2006}\))
<=> -2006 (x+\(\sqrt{x^2+2006}\)) = 2006 (\(y-\sqrt{y^2+2006}\))
<=>x+\(\sqrt{x^2+2006}\) =\(\sqrt{y^2+2006}\) - y
<=>x =\(\sqrt{y^2+2006}-\sqrt{x^2+2006}-y\) (2)
từ (1) và (2)=>x+y= - y - x
=>2 (x+y) = 0 => x+y = 0
Chứng minh :
a. \(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)
b. \(\left(\sqrt{2006}-\sqrt{2005}\right)\) và \(\left(\sqrt{2006}+\sqrt{2005}\right)\) là hai số nghịch đảo của nhau
giúp mk nha m.n đaq cần gấp
Hai bài này áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\) bạn nhé
a)
\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=2^2-\sqrt{3}^2\)
\(=4-3\)
\(=1\)
b)
Hai số nghịch đảo nhau là 2 số có tích của chúng bằng 1
Ví dụ
\(\frac{a}{b}\) và \(\frac{b}{a}\) ( hai số nghịch đảo )
\(\frac{a}{b}.\frac{b}{a}=1\)
Ta có
\(\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)\)
\(=\sqrt{2006}^2-\sqrt{2005}^2\)
\(=2006-2005\)
\(=1\)
=> Đpcm
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{3a^2+2b^2}{3c^2+2d^2}\)
b)\(\frac{4a^4+5b^4}{4c^4+5d^4}=\frac{a^2b^2}{c^2d^2}\)
c)\(\left(\frac{a-b}{c-d}\right)^{2005}=\frac{2a^{2005}-b^{2005}}{2c^{2005}-d^{2005}}\)
d)\(\frac{2a^{2005}+5b^{2005}}{2c^{2005}+5d^{2005}}=\frac{\left(a+b\right)^{2005}}{\left(c+d\right)^{2005}}\)
e)\(\frac{\left(20a^{2006}+11b^{2006}\right)^{2007}}{\left(20a^{2007}-11b^{2007}\right)^{2006}}=\frac{\left(20c^{2006}+11d^{2006}\right)^{2007}}{\left(20c^{2007}-11d^{2007}\right)^{2006}}\)
f)\(\frac{\left(20a^{2007}-11c^{2007}\right)^{2006}}{\left(20a^{2006}+11c^{2006}\right)^{2007}}=\frac{\left(20b^{2007}-11d^{2007}\right)^{2006}}{\left(20b^{2006}+11d^{2006}\right)^{2007}}\)
ừ, bạn bik làm thì giúp mình nha ^^
\(cho:ab+bc+ac=2006\left(a,b,c\in Z\right)\)
\(CM:P=\left(a^2+2006\right)\left(b^2+2006\right)\left(c^2+2006\right)\)là số chính phương
ta có: \(a^2+2006=a^2+ab+bc+ca=\left(a+c\right)\left(a+b\right).\)
\(b^2+2006=b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)
\(c^2+2006=c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)
=> \(P=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
mà a,b,c thuộc Z nên P là số chính phương
giải pt = cách đặt ẩn phụ
a) \(x^2+\sqrt{x+2006}=2006\)
b) \(x=\left(2004+\sqrt{x}\right)\left(1-\sqrt{1-\sqrt{x}}\right)^2\)
Làm chi tiết giúp mk vs
a/ ĐKXĐ: ...
Đặt \(\sqrt{x+2006}=a\ge0\Rightarrow a^2-x=2006\)
Pt trở thành:
\(x^2+a=a^2-x\)
\(\Leftrightarrow x^2-a^2+x+a=0\)
\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2006}=-x\left(x\le0\right)\\\sqrt{x+2006}=x+1\left(x\ge-1\right)\end{matrix}\right.\) (1)
\(\Leftrightarrow\left[{}\begin{matrix}x+2006=x^2\\x+2006=\left(x+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2006=0\\x^2+x-2005=0\end{matrix}\right.\)
Nhớ loại nghiệm của từng pt phù hợp với (1)
b/ ĐKXĐ: ...
Đặt \(\sqrt{1-\sqrt{x}}=a\Rightarrow\sqrt{x}=1-a^2\Rightarrow x=\left(1-a^2\right)^2\) (với \(0\le a\le1\))
\(\left(1-a^2\right)^2=\left(2005-a^2\right)\left(1-a\right)\)
\(\Leftrightarrow\left(1+a\right)^2\left(1-a\right)^2=\left(2005-a^2\right)\left(1-a\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\\left(1-a\right)\left(1+a\right)^2=2005-a^2\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow a^3-a+2004=0\)
Do \(0\le a\le1\Rightarrow a^3-a+2004>0\Rightarrow\) pt vô nghiệm
Vậy pt có nghiệm duy nhất \(x=0\)
cho \(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)=2006\) tinh x+y
Ta có \(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)=2006\)nên \(\left(\sqrt{x^2+2006}-x\right)\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)=2006.\left(\sqrt{x^2+2006}-x\right)\)\(2006.\left(y+\sqrt{y^2+2006}\right)=2006.\left(\sqrt{x^2+2006}-x\right)\)suy ra \(y+\sqrt{y^2+2006}=\sqrt{x^2+2006}-x\)(1) Tương tự ta có \(x+\sqrt{x^2+2006}=\sqrt{y^2+2006}-y\) (2) cộng (1) và (2) vế với vế ta được
x+y = -(x+y) hay suy ra 2(x+y) = 0 \(\Rightarrow\) x+y = 0