Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Hương
Xem chi tiết
Tăng Ngọc Đạt
Xem chi tiết
Minh Thư
Xem chi tiết
Hà Nam Phan Đình
9 tháng 10 2017 lúc 21:41

a) vì ab > 0 nên chia cả hai vế Bất đẳng thức cho \(\sqrt{ab}\) ta được

\(\sqrt{\dfrac{c\left(a-c\right)}{ab}}+\sqrt{\dfrac{c\left(b-c\right)}{ab}}\le1\)

Áp dụng Bất đẳng thức Cauchy cho hai số

\(\Rightarrow\sqrt{\dfrac{c}{b}\left(\dfrac{a-c}{a}\right)}+\sqrt{\dfrac{c}{a}\left(\dfrac{b-c}{b}\right)}\le\dfrac{1}{2}\left(\dfrac{c}{b}+\dfrac{a-c}{a}\right)+\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{b-c}{b}\right)=1\)

vậy nên ta có đpcm

Đạt Trần Tiến
10 tháng 10 2017 lúc 22:32

\(\frac{2005}{\sqrt{2006} }+\frac{2006}{\sqrt{2005} }>\sqrt{2005}+\sqrt{2006} \)

<=>\(2005\sqrt{2005}+2006\sqrt{2006}>2005\sqrt{2006}+2006\sqrt{2005} \)

<=>\(\sqrt{2006}<\sqrt{2005} \)

Lê Thị Thanh Huyền
Xem chi tiết
nguyễn thị bình minh
20 tháng 10 2017 lúc 22:09

biểu thức dã cho <=> ( x+\(\sqrt{x^2+2006}\) ) (\(x-\sqrt{x^2+2006}\)) (y+\(\sqrt{y^2+2006}\)) =2006 (x-\(\sqrt{x^2+2006}\))

=> - 2006 ( y + \(\sqrt{y^2+2006}\)) = 2006 ( x-\(\sqrt{x^2+2006}\))

=>y + \(\sqrt{y^2+2006}\) = \(\sqrt{x^2+2006}\) - x

=>y = \(\sqrt{x^2+2006}\) - x - \(\sqrt{y^2+2006}\) (1)

TT ta có biểu thức đã cho<=>

\(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)\left(y-\sqrt{y^2+2006}\right)=2006\) (y-\(\sqrt{y^2+2006}\))

<=> -2006 (x+\(\sqrt{x^2+2006}\)) = 2006 (\(y-\sqrt{y^2+2006}\))

<=>x+\(\sqrt{x^2+2006}\) =\(\sqrt{y^2+2006}\) - y

<=>x =\(\sqrt{y^2+2006}-\sqrt{x^2+2006}-y\) (2)

từ (1) và (2)=>x+y= - y - x

=>2 (x+y) = 0 => x+y = 0

Phan Ngọc Linh
Xem chi tiết
Isolde Moria
29 tháng 8 2016 lúc 16:05

Hai bài này áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\) bạn nhé

a)

\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\)

\(=2^2-\sqrt{3}^2\)

\(=4-3\)

\(=1\)

b)

Hai số nghịch đảo nhau là 2 số có tích của chúng bằng 1

Ví dụ

\(\frac{a}{b}\) và \(\frac{b}{a}\) ( hai số nghịch đảo )

\(\frac{a}{b}.\frac{b}{a}=1\)

Ta có

\(\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)\)

\(=\sqrt{2006}^2-\sqrt{2005}^2\)

\(=2006-2005\)

\(=1\)

=> Đpcm 

Nguyễn Bạch Trường Giang
Xem chi tiết
Lê Huỳnh Minh Ánh
9 tháng 7 2016 lúc 12:28

khó quá ak

Nguyễn Bạch Trường Giang
9 tháng 7 2016 lúc 13:00

ừ, bạn bik làm thì giúp mình nha ^^

mon wang
Xem chi tiết
Võ Thị Quỳnh Giang
23 tháng 10 2017 lúc 21:03

ta có:  \(a^2+2006=a^2+ab+bc+ca=\left(a+c\right)\left(a+b\right).\)

\(b^2+2006=b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)

\(c^2+2006=c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)

=> \(P=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

mà a,b,c thuộc Z nên P là số chính phương

Lê Thanh Nhàn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 11 2019 lúc 22:37

a/ ĐKXĐ: ...

Đặt \(\sqrt{x+2006}=a\ge0\Rightarrow a^2-x=2006\)

Pt trở thành:

\(x^2+a=a^2-x\)

\(\Leftrightarrow x^2-a^2+x+a=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2006}=-x\left(x\le0\right)\\\sqrt{x+2006}=x+1\left(x\ge-1\right)\end{matrix}\right.\) (1)

\(\Leftrightarrow\left[{}\begin{matrix}x+2006=x^2\\x+2006=\left(x+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2006=0\\x^2+x-2005=0\end{matrix}\right.\)

Nhớ loại nghiệm của từng pt phù hợp với (1)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
8 tháng 11 2019 lúc 22:48

b/ ĐKXĐ: ...

Đặt \(\sqrt{1-\sqrt{x}}=a\Rightarrow\sqrt{x}=1-a^2\Rightarrow x=\left(1-a^2\right)^2\) (với \(0\le a\le1\))

\(\left(1-a^2\right)^2=\left(2005-a^2\right)\left(1-a\right)\)

\(\Leftrightarrow\left(1+a\right)^2\left(1-a\right)^2=\left(2005-a^2\right)\left(1-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\\left(1-a\right)\left(1+a\right)^2=2005-a^2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow a^3-a+2004=0\)

Do \(0\le a\le1\Rightarrow a^3-a+2004>0\Rightarrow\) pt vô nghiệm

Vậy pt có nghiệm duy nhất \(x=0\)

Khách vãng lai đã xóa
Lê Thanh Nhàn
8 tháng 11 2019 lúc 22:32

@Nguyễn Việt Lâm

Khách vãng lai đã xóa
nguyen kim chi
Xem chi tiết
Nguyễn Văn quyết
18 tháng 6 2015 lúc 15:39

Ta có \(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)=2006\)nên \(\left(\sqrt{x^2+2006}-x\right)\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)=2006.\left(\sqrt{x^2+2006}-x\right)\)\(2006.\left(y+\sqrt{y^2+2006}\right)=2006.\left(\sqrt{x^2+2006}-x\right)\)suy ra \(y+\sqrt{y^2+2006}=\sqrt{x^2+2006}-x\)(1) Tương tự ta có \(x+\sqrt{x^2+2006}=\sqrt{y^2+2006}-y\) (2) cộng (1) và (2) vế với vế ta được 

x+y = -(x+y) hay suy ra 2(x+y) = 0 \(\Rightarrow\) x+y = 0