Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thanh Nhàn

giải pt = cách đặt ẩn phụ

a) \(x^2+\sqrt{x+2006}=2006\)

b) \(x=\left(2004+\sqrt{x}\right)\left(1-\sqrt{1-\sqrt{x}}\right)^2\)

Làm chi tiết giúp mk vs

Nguyễn Việt Lâm
8 tháng 11 2019 lúc 22:37

a/ ĐKXĐ: ...

Đặt \(\sqrt{x+2006}=a\ge0\Rightarrow a^2-x=2006\)

Pt trở thành:

\(x^2+a=a^2-x\)

\(\Leftrightarrow x^2-a^2+x+a=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2006}=-x\left(x\le0\right)\\\sqrt{x+2006}=x+1\left(x\ge-1\right)\end{matrix}\right.\) (1)

\(\Leftrightarrow\left[{}\begin{matrix}x+2006=x^2\\x+2006=\left(x+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2006=0\\x^2+x-2005=0\end{matrix}\right.\)

Nhớ loại nghiệm của từng pt phù hợp với (1)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
8 tháng 11 2019 lúc 22:48

b/ ĐKXĐ: ...

Đặt \(\sqrt{1-\sqrt{x}}=a\Rightarrow\sqrt{x}=1-a^2\Rightarrow x=\left(1-a^2\right)^2\) (với \(0\le a\le1\))

\(\left(1-a^2\right)^2=\left(2005-a^2\right)\left(1-a\right)\)

\(\Leftrightarrow\left(1+a\right)^2\left(1-a\right)^2=\left(2005-a^2\right)\left(1-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\\left(1-a\right)\left(1+a\right)^2=2005-a^2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow a^3-a+2004=0\)

Do \(0\le a\le1\Rightarrow a^3-a+2004>0\Rightarrow\) pt vô nghiệm

Vậy pt có nghiệm duy nhất \(x=0\)

Khách vãng lai đã xóa
Lê Thanh Nhàn
8 tháng 11 2019 lúc 22:32

@Nguyễn Việt Lâm

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lưu Thị Thảo Ly
Xem chi tiết
Ko Cần Bt
Xem chi tiết
Nguyễn Thanh Liêm
Xem chi tiết
Lê Hương Giang
Xem chi tiết
DRACULA
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
Cold Wind
Xem chi tiết
Phạm Lan Hương
Xem chi tiết
Trương Thị Mỹ Duyên
Xem chi tiết