Y= -X^3 + 3mx^2-3m-1 có 2 điểm cực trị đối xứng nhau qua x+8y-74=0
Cho hàm số y= -x3+3mx2-3m-1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d: x+8y-74=0.
A. m=1
B. m=- 2
C. m= -1
D. m=1
Ta có
Để đồ thị hàm số có hai điểm cực trị khi m khác 0.
Khi đó gọi A( 0 ; -3m-1) và B( 2m ; 4m3-3m-1) là hai điểm cực trị của đồ thị hàm số.
Suy ra trung điểm của AB là điểm I ( m ; 2m3-3m-1) và A B → = ( 2 m ; 4 m 3 ) = 2 m ( 1 ; 2 m 2 )
Đường thẳng d có một vectơ chỉ phương là u → = ( 8 ; - 1 ) .
Ycbt
Chọn D.
Đồ thị hàm số y = - x 3 + 3 m x 2 - 3 m - 1 có cực đại và cực tiểu đối xứng nhau qua đường thẳng d: x+8y-74=0 khi m bằng:
A. 1
B. -2
C. -1
D. 2
Đồ thị hàm số y = - x 3 + 3 m x 2 - 3 m - 1 có cực đại và cực tiểu đối xứng nhau qua đường thẳng d : x + 8 y - 74 = 0 khi m bằng.
A.1
B.-2
C.-1
D.2
Cho hàm số \(y=x^3-3mx^2+4m^3\) (m là tham số) có đồ thị Cm
Xác định m để Cm có các điểm cực đại và cực tiểu đối xứng với nhau qua đường thẳng y=x
gợi ý :
Tìm giá trị của \(m\) để hàm số có cực đại ,cực tiểu .
Ta có \(y'=3x^2-6mx=0\Leftrightarrow\begin{cases}x=0\\x=2m\end{cases}\)
Để hàm số có cực đại và cực tiểu thì m khác 0
Giả sử hàm số có 2 điểm cực trị là \(A\left(0;4m^3\right),B\left(2m;0\right)\Rightarrow\overrightarrow{AB}=\left(2m;-4m^2\right)\)
Trung điểm của đoạn AB là \(I\left(m;2m^3\right)\)
Điều kiện để AB đối xứng nhau qua đường thẳng y=x là AB vuông góc với đường thẳng y=x và I thuộc đường thẳng y=x
\(\Leftrightarrow\begin{cases}2m-4m^3=0\\3m^3=m\end{cases}\)
Kết hợp với điều kiện ta có : \(m=\pm\frac{\sqrt{2}}{2}\)
Giải ra ta có \(m=\pm\frac{\sqrt{2}}{2};m=0\)
có bao nhiêu giá trị nguyên của m thuộc khoảng (0 ; 2020) để đồ thị của hàm số y= \(3mx^2-\left(m-9\right)x+8-m^2\) có hai điểm phân biệt đối xứng nhau qua gốc tọa độ ?
TH1 : Đồ thị hàm số y = 3mx2 - (m - 9)x + 8 - m2 có hai điểm phân biệt đối xứng nhau qua gốc tọa độ khi hàm số trên là hàm số lẻ trên tập xác định R
Khi đó f(x) + f(-x) = 0
⇒ 3mx2 + 3mx2 - (m - 9)x + 8- m2 + (m - 9)x - m2 + 8 = 0
⇒ 6mx2 + 16 = 0 (không có m)
Có 2 điểm nghĩa là chỉ cần tồn tại 2 điểm thôi, không phải "với mọi" như là hàm lẻ (hàm lẻ thì đối xứng qua gốc tọa độ với mọi x)
Giả sử tồn tại điểm A có hoành độ \(x=a\) và B là điểm thuộc (P) đồng thời đối xứng A qua gốc tọa độ
\(\Rightarrow\left\{{}\begin{matrix}x_A=-x_B\\y_A=-y_B\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B=-a\\y_A+y_B=0\end{matrix}\right.\)
\(\Rightarrow3ma^2-\left(m-9\right)a+8-m^2+\left[3ma^2+\left(m-9\right)a+8-m^2\right]=0\)
\(\Leftrightarrow6ma^2+16-2m^2=0\) (m=0 không thỏa mãn)
\(\Leftrightarrow a^2=\dfrac{m^2-8}{3m}\)
Do \(a^2\ge0\Rightarrow\dfrac{m^2-8}{3m}\ge0\)
\(\Rightarrow m\in[-2\sqrt{2};0)\cup[2\sqrt{2};+\infty)\)
\(\Rightarrow\) Có \(2019-3+1=2017\) giá trị nguyên của m thỏa mãn
Cho hàm số y=-\(x^3\)+3m\(x^2\)-3m-1.Tìm m để đồ thị hàm số có CĐ,CT đồng thời 2 điểm này đối xứng qua đt d:\(x\)+8\(y\)-74=0
Cho hàm số: y=x-3-3(m+1)x2+9x+m-2 (1) có đồ thị là (Cm). Có bao nhiêu giá trị nguyên của tham số m để (Cm) có điểm cực đại, cực tiểu đối xứng với nhau qua đường thẳng y=1/2x ?
A. 0
B. 1
C. 2
D. 3
y=x^3-3mx^2+4x
xác định để (Cm) có điểm cực đại và cực trị qua đường thẳng x=y
Giả sử đồ thị hàm số y=x3 -3mx2+3(m+6)x+1 có hai cực trị. khi đó đường thẳng qua hai điểm cực trị có phương trình là: