Chứng minh đẳng thức:
\(x\left(x+1\right)\left(x+2\right)=x^3+3\text{x}^2+2\text{x}\)
chứng minh rằng biểu thức không thuộc vào biến x:
\(A=\left(3\text{x}-5\right)\left(2\text{x}+11\right)-\left(2\text{x}+3\right)\left(3\text{x}+7\right)\)
cho ba số tự nhiên liên tiếp, tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi ba số đã cho là số nào?
chứng minh:
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) luôn chia hết cho 6 với mọi n
\(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)
\(=\left(6x^2-6x^2\right)+\left(33x-10x-14x-9x\right)-\left(55+21\right)\)
\(=-76\)
Vậy A không phụ thuộc vào biến x (đpcm)
Cho biểu thức:\(P=\left(\dfrac{2\text{x}}{x^2-9}-\dfrac{1}{x+3}\right):\left(\dfrac{2}{x}-\dfrac{x-1}{x^2-3\text{x}}\right)v\text{ới}x\ne\pm3;x\ne0;x\ne5\)
1, Chứng minh \(P=\dfrac{x}{x-5}\)
1: \(P=\left(\dfrac{2x}{x^2-9}-\dfrac{1}{x+3}\right):\left(\dfrac{2}{x}-\dfrac{x-1}{x^2-3x}\right)\)
\(=\left(\dfrac{2x}{\left(x-3\right)\left(x+3\right)}-\dfrac{1}{x+3}\right):\left(\dfrac{2}{x}-\dfrac{x-1}{x\cdot\left(x-3\right)}\right)\)
\(=\dfrac{2x-x+3}{\left(x-3\right)\left(x+3\right)}:\dfrac{2\left(x-3\right)-x+1}{x\left(x-3\right)}\)
\(=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(x-3\right)}{2x-6-x+1}\)
\(=\dfrac{x}{x-5}\)
Xác định a,b,c,d thỏa mãn đẳng thức.
a) \(\left(\text{ax+b}\right)\left(x^2+c\text{x+1}\right)=x^3-3\text{x}+2\)
b) \(x^4+\text{ax}^2+b=\left(x^3-3\text{x}+2\right)\left(x^2+c\text{x}+d\right)\)
Mọi người giúp mình nha!
Chứng minh đẳng thức
\(\text{[}\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\text{]}:\frac{x-1}{x}=\frac{2x}{x-1}\)
ĐKXĐ:...
\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{-3x^2-2x+1}{3x}\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)\left(1-3x\right)}{3x\left(x+1\right)}\right].\frac{x}{x-1}=\left(\frac{2}{3x}-\frac{2\left(1-3x\right)}{3x}\right).\left(\frac{x}{x-1}\right)\)
\(=\left(\frac{2-2+6x}{3x}\right)\left(\frac{x}{x-1}\right)=\frac{2x}{x-1}\)
Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị x:
\(B=2\left(x^3+1\right)9\text{x}^2-3\text{x}+1-54\text{x}^3\)
\(B=2\cdot\left(x^3+1\right)\cdot9x^2-3x+1-54x^3\)
\(=18x^2\left(x^3+1\right)-3x+1-54x^3\)
\(=18x^5+18x^2-3x+1-54x^3\)
Biểu thức này có phụ thuộc vào x nha bạn
Tìm x, biết:
a) \(x\left(x-1\right)-x^2+2\text{x}=5\)
b) \(8\left(x-2\right)-2\left(3\text{x}-4\right)=2\)
c) \(\left(3\text{x}+2\right)\left(x-1\right)-3\left(x+1\right)\left(x-2\right)=4\)
d) \(\left(3\text{x}-5\right)\left(7-5\text{x}\right)-\left(5\text{x}+2\right)\left(2-3\text{x}\right)=4\)
Các bạn giúp mình bài toán sau
\(\left(x+2\right)^3\text{-}\left(x+1\right)\left(x^2\text{-}x+1\right)=10\)
\(\left(x\text{-}1\right)^3\text{-}\left(x\text{-}2\right)\left(x^2+x+4\right).3x\left(x+1\right)=0\)
\(\left(x\text{-}3\right)^2\text{-}\left(x\text{-}2\right)\left(x^2+2x+4\right)\text{-}9x\left(x\text{-}1\right)=0\)
đề bài là tìm x à bạn? đề có cho điều kiện ko vậy ạ? (ví dụ như x nguyên?)
\(\left(x-1\right)^3+\left(x^3-8\right).3x.\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[\left(x-1\right)^2+\left(x^3-8\right).3x\right]=0\)
TH1: \(x-1=0\Leftrightarrow x=1\)
TH2: \(\left(x-1\right)^2+\left(x^3-8\right).3x=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^3-8\right).3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x^3-8=0\\3x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x=2\\x=0\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
tìm x, biết:
a) \(\left(3\text{x}+2\right)\left(x-1\right)-3\left(x+1\right)\left(x-2\right)=4\)
b) \(\left(3\text{x}-5\right)\left(7-5\text{x}\right)-\left(5\text{x}+2\right)\left(2-3\text{x}\right)=4\)
Chứng minh đẳng thức:
\(\left(x+y\right)\left(x^3+y^3\right)-\left(x^2+y^2\right)^2=xy\left(x-y\right)^2\)
Có \(VT=x^4+x^3y+xy^3+y^4-x^4-2x^2y^2-y^4\)
\(=x^3y+xy^3-2x^2y^2\)
\(=xy\left(x^2+y^2-2xy\right)\)
\(=xy\left(x-y\right)^2=VP\)