Có \(VT=x^4+x^3y+xy^3+y^4-x^4-2x^2y^2-y^4\)
\(=x^3y+xy^3-2x^2y^2\)
\(=xy\left(x^2+y^2-2xy\right)\)
\(=xy\left(x-y\right)^2=VP\)
Có \(VT=x^4+x^3y+xy^3+y^4-x^4-2x^2y^2-y^4\)
\(=x^3y+xy^3-2x^2y^2\)
\(=xy\left(x^2+y^2-2xy\right)\)
\(=xy\left(x-y\right)^2=VP\)
Chứng minh các đẳng thức:
a)\(\left(x-y\right).\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)
b)\(\left(a+b\right)^2-\left(a-b\right)^2=4ab\)
55. Chứng minh đẳng thức: \(\dfrac{\left(x-y\right)^7-x^7+y^7}{\left(x-y\right)^5-x^5+y^5}=\dfrac{7}{5}\left(x^2-xy+y^2\right)\)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x,y:\(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
\(X^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)Chứng minh hàng đẳng thức
Rút gọn biểu thức:
a) \(A=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
b) \(B=3x^2\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)+\left(x^2-1\right)^3\)
c) \(C=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
d) \(D=\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)
Chứng minh các đẳng thức sau:
\(\left(x+y\right)^2+\left(x-y\right)^2=2\left(x^2+y^2\right)\)
Chứng minh:
\(\left(x-y\right)\)\(\left(x^3+x^2y+xy^2+y^3\right)\)\(=x^4-y^4\)
Chứng minh các đẳng thức sau :
\(\left(\dfrac{2x+2y-z}{3}\right)^2+\left(\dfrac{2y+2z-x}{3}\right)^2+\left(\dfrac{2z+2x-y}{3}\right)^2=x^2+y^2+z^2\)
Chứng minh:
a) \(\left(a-b\right)^3=-\left(b-a\right)^3\)
b) \(\left(-a-b\right)^2=\left(a+b\right)^2\)
c) \(\left(x+y\right)^3=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
d) \(\left(x+y\right)^3-\left(x-y\right)^3=2y\left(y^2+3x^2\right)\)