CMR lập phương của STN bất kì (n > 1) .Trừ đi 15 lần số tự nhiên đó thì \(⋮\)6
CẢM ƠN MN
CMR: lập phương của 1 số nguyên n bất kì (n>1) trừ đi 13 lần số nguyên đó thì luôn chia hết cho 6.
Gọi số nguyên đó là a. Ta cần chứng minh
a3+11a⋮6a3+11a⋮6
Xét: a3+11a=a(a2+11)=a(a2−1+12)=a(a2−1)+12a=a(a+1)(a−1)+12a⋮6a3+11a=a(a2+11)=a(a2−1+12)=a(a2−1)+12a=a(a+1)(a−1)+12a⋮6
Vậy ta có đpcm.
Lời giải:
Xét biểu thức A=n3−13nA=n3−13n. Ta cần cm A⋮6A⋮6
Thật vậy: A=n3−13n=n3−n−12n=n(n2−1)−12nA=n3−13n=n3−n−12n=n(n2−1)−12n
A=n(n−1)(n+1)−12nA=n(n−1)(n+1)−12n
Vì n,n−1n,n−1 là hai số tự nhiên liên tiếp nên tích n(n−1)⋮2n(n−1)⋮2
⇒n(n−1)(n+1)⋮3⇒n(n−1)(n+1)⋮3
Vì n−1,n,n+1n−1,n,n+1 là ba số tự nhiên liên tiếp nên tích n(n−1)(n+1)⋮3n(n−1)(n+1)⋮3
Kết hợp với (2,3) nguyên tố cùng nhau, do đó: n(n−1)(n+1)⋮6n(n−1)(n+1)⋮6
Mà 12n⋮612n⋮6
⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6
Ta có đpcm.
Ta phải chứng minh: \(A\left(n\right)=n^3-13n⋮6\)
Chú ý rằng: \(13n=12n+n\), mà \(12n⋮6\), ta biến đổi A(n) thành:
\(A\left(n\right)=\left(n^3-n\right)-12n\)
Ta có: \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Đây là tích của 3 số nguyên liên tiếp, tích này luôn chia hết cho 6. A(n) là hiệu của 2 hạng tử: \(n^3-n\)và 12n, mỗi hạng tử chia hết cho 6, nên \(A\left(n\right)⋮6\left(đpcm\right)\)
chứng minh rằng lập phương của một số tự nhiên n bất kì ( n thuộc N*) trừ đi bảy lần số đó luôn chia hết cho 6
ai cũng có thể giải đươc. Ai nhanh minh k
có : \(n^3-7n=n^3-n-6n=n\left(n-1\right)\left(n+1\right)-6n\) mà n,n-1,n+1 là 3 số tự nhiên liên tiếp nên tích của chúng chia hết cho 6 và 6n chia hết cho 6 nên ta có điều phải chứng minh.
-Đề thi HSG cấp II toàn quốc,1970- Chứng minh rằng lập phương của một số nguyên n bất kì (n>1) trừ đi 13 lần số nguyên đó thì luôn chia hết cho 6?
cmr lập phương của một số tn n bất kỳ (n.>0) trừ đi bảy lần số tn đó luôn chia hết cho 6
Xin lỗi bạn mik lp 7
Gọi số tự nhiên đó là n
Ta có
n^3-7n=n^3-n-6n=n(n^2-1)-6n
=n(n-1)(n+1)-6n \(\left(1\right)\)
Do n,n-1,n+1 là 3 stn liên tiếp
=>n(n-1)(n+1) chia hết cho 6
6n chia hết cho 6
=> (1) chia hết cho 6
=>n^3-7n chia hết cho 6 ( dpcm )
Ta có n3 - 7n = n3 - n -6n ( n thuộc N)
= n(n2 -1) - 6n
= n(n-1)(n+1) -6n
vì n thuộc N => n(n-1)(n+1) là tích 3 số nguyên liên tiếp
=> n(n-1)(n+1) chia hết cho 2,3 mà 2,3 nguyên tố cùng nhau
=> n(n-1)(n+1) chia hết cho(2.3) tức là chia hết cho 6
mặt khác 6n chia hết cho 6 với mọi n thuộc N
=> n(n-1)(n+1) - 6n chia hết cho 6 với mọi n thuộc N
hay n3 - 7n chia hết cho 6 với mọi n thuộc N
Cho 2 số tự nhiên biết hiệu của 2 số đó là 526 . Nếu giảm số bị trừ đi 15 đơn vị đồng thời thêm vào số trừ 15 đơn vị thì lúc đó số bị trừ sẽ gấp 5 lần số trừ . Tìm hai số tự nhiên đó ?
Tự vẽ sơ đồ.
Nếu giảm số bị trừ đi 15 và tăng số trừ thêm 15 đơn vị thì hiệu 2 số đó là 526 - 15 - 15 = 496
Hiệu số phần bằng nhau là: 5-1 = 4 (phần)
Một phần là: 496 : 4 = 124
Số trừ là : 124 - 15 = 109
Số bị trừ là : 526 - 109 = 417
Cho hai số tự nhiên biết hiệu của hai số đó là 526.Nếu giảm số bị trừ đi 15 đơn vị đồng thời thêm vào số trừ 15 đơn vị thì lúc đó số bị trừ sẽ gấp 5 lần số trừ .Tìm hai số tự nhiên đó ?
gọi x là số lớn => số bé= 526 + x ......ok?
Theo đề nếu giảm số bị trừ đi 15 đơn vị đồng thời thêm vào số trừ 15 đơn vị , ta có
số lớn(số bị trừ)= x - 15 và số bé(số trừ) = 526 +x +15= x + 541
thì lúc đó số bị trừ sẽ gấp 5 lần số trừ ta có: x- 15= 5.(x +541)
giải để tìm ra x
CMR lập phương của 1 số nguyên n (n>1) trừ đi 13 lần số nguyên đó luôn chia hết cho 6
B=a^3-13a
=a^3-a-12a
=a(a-1)(a+1)-12a
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 6
=>B chia hết cho 6
Tìm số nguyên không âm biết rằng 5 lần số đó được bao nhiêu rồi bớt đi 6 thì chia hết cho tổng của số đó với 3(giải chi tiết)
2.Cho 7 số tự nhiên bất kì a1;a2;a3;...;a7.Cmr luôn chọn được 4 số từ những số trên để tổng của chúng chia hết cho 4
1.
Gọi số cần tìm là \(n\)(\(n\in Z\)|\(n\le0\))
Theo đề bài ta có:
\(5n-6⋮n+3\)
\(5n+15-21⋮n+3\)
\(5\left(n+3\right)-21⋮n+3\)
\(\Rightarrow-21⋮n+3\)
\(\Rightarrow n+3\inƯ\left(-21\right)\)
\(Ư\left(-21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
Ta có bảng sau:
n+3 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -24 | -10 | -6 | -4 | -2 | 0 | 4 | 18 |
Ta thấy n chỉ có 0;4;18 thỏa mãn điều kiện
Vậy các số cần tìm là 0;4;18
1 có phải là ước chung của hai số tự nhiên bất kì không? Vì sao?
Mong mn giúp, hứa sẽ tick trả mn. Cảm ơn!
TL
Ko nha. Vì có 2 số ko có ước chung
Xin k
Hok tốt
Đáp án :
Giải: Số 1 là ước chung của hai số tự nhiên bất kì. Bởi vì tất cả các số tự nhiên đều có ước số là số 1.
#Mainèk
TL
số 1 là ƯC của 2 số bất kì vì các số tư nhiên đều ⋮ 1
Xin k
Nhớ k
HT