Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
super xity
Xem chi tiết
super xity
Xem chi tiết
Quyết Bùi Thị
4 tháng 10 2015 lúc 21:46

TC: B=2x2 + 3x + 2

        =2(x2 + \(\frac{3}{2}\)x+1)

        =2\(\left(\left(x^2+2x.\frac{3}{4}+\frac{9}{16}\right)+\frac{7}{16}\right)\)

        =2\(\left(x+\frac{3}{4}\right)^2\)+\(\frac{7}{8}\)

Vì 2\(\left(x+\frac{3}{4}\right)^2\)\(\ge\)0  với mọi x\(\)

\(\Rightarrow\)2\(\left(x+\frac{3}{4}\right)^2\) + \(\frac{7}{8}\)\(\ge\)\(\frac{7}{8}\)

Dấu"=" xảy ra \(\Leftrightarrow\) \(\left(x+\frac{3}{4}\right)^2\)=0

                     \(\Leftrightarrow\)\(x+\frac{3}{4}\)=0

                      \(\Leftrightarrow\)x=\(\frac{-3}{4}\)

Vậy....

super xity
Xem chi tiết
Min
20 tháng 10 2015 lúc 21:54

\(\frac{2}{8x-4x^2-5}\)

Xét mẫu:    \(8x-4x^2-5=-4x^2+8x-4-1=-\left(4x^2-8x+4\right)-1=-\left(2x-2\right)^2-1\)

 \(-\left(2x-2\right)^2\le0\Rightarrow-\left(2x-2\right)^2-1\le-1\)

 Nên  \(\frac{2}{8x-4x^2-5}\le\frac{2}{-1}\le-2\)

Vậy giá trị lớn nhất của \(\frac{2}{8x-4x^2-5}\)-2

Tuyết Ly
Xem chi tiết
Cô nàng Thiên Yết
Xem chi tiết

a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)

\(\Rightarrow P\le\frac{1}{5}\)

Dấu "=" xảy ra khi x=-1

Khách vãng lai đã xóa

\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)

Đặt \(a=\frac{1}{x+1}\)

\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)

Khách vãng lai đã xóa
Kientu Nguyen
9 tháng 2 2020 lúc 19:54

\(P=\frac{1}{x^2+2x+6}\)

để pmin thì \(x^2+2x+6max\)

\(\frac{1}{x^2+2x+6}=\frac{1}{\left(x+1\right)^2+5}\)lớn hơn hoặc bằng 1/5 

=>Pmin=1/5 khi và chỉ khi x=-1

Khách vãng lai đã xóa
super xity
Xem chi tiết
Phước Nguyễn
11 tháng 1 2016 lúc 9:23

\(\left(\text{*}\right)\) Tìm giá trị lớn nhất của biểu thức sau:

Ta có:

\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\) \(x=1\)

Vậy,   \(A_{max}=2\) \(\Leftrightarrow\) \(x=1\)

                                 -------------------------------------------------

\(B=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(2x+1\right)^2=0\)  \(\Leftrightarrow\) \(2x+1=0\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

Vậy,   \(B_{max}=4\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

                              ____________________________________

 \(\left(\text{*}\text{*}\right)\)  Tìm giá trị nhỏ nhất của biểu thức sau:

Từ \(A=\frac{x^2+1}{x^2-x+1}\)

\(\Rightarrow\) \(3A=\frac{3x^2+3}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=\frac{\left(x+1\right)^2}{x^2-x+1}+2\ge2\)  với mọi  \(x\)

Vì   \(3A\ge2\) nên  \(A\ge\frac{2}{3}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x+1\right)^2=0\)  \(\Leftrightarrow\)  \(x+1=0\)  \(\Leftrightarrow\) \(x=-1\)

Vậy,   \(A_{min}=\frac{2}{3}\)  \(\Leftrightarrow\)  \(x=-1\)

Câu b) tự giải

༺ミ𝒮σɱєσиє...彡༻
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 15:23

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

ILoveMath
13 tháng 11 2021 lúc 15:24

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

NGUYÊN ĐZ
6 tháng 1 lúc 13:45

um


super xity
Xem chi tiết
Ngọc Vĩ
20 tháng 10 2015 lúc 21:01

a/ \(M=x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+5\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Vậy Min M = 11/4 khi x - 3/2 = 0 => x = 3/2

b/ \(N=-\left(4x^2-\frac{2}{8}x+5\right)\)

\(=-\left[\left(2x\right)^2-2.2x.\frac{1}{16}+\left(\frac{1}{16}\right)^2-\left(\frac{1}{16}\right)^2+5\right]\)

\(=-\left(2x-\frac{1}{16}\right)^2-\frac{1279}{256}\ge-\frac{1279}{256}\)

Vậy Min N = -1279/256 khi 2x - 1/16 = 0 => 2x = 1/16 => x = 1/32

super xity
Xem chi tiết
phan tuấn anh
13 tháng 1 2016 lúc 21:43

cậu 1 GTNN=1 khi x=0

câu 2 GTLN =12/11 khi x=3/2

Anh
13 tháng 1 2016 lúc 21:52

ta co : x^2-3x+5=(x+3/2)^2+11/4  => (x+3/2)^2+11/4 >hoac= 11/4 ; roi ban lay 3 chia cho ca 2 ve ta duoc : 3/(x^2-3x+5) >hoac = 12/11 ;             dau = xay ra =>max=12/11 <=>x=-3/2                                                                                                                                                                                                     chuc ban hoc tot !!!!!

phan tuấn anh
13 tháng 1 2016 lúc 21:58

anh giải sai rồi phải =-3/2