\(N=\left(\dfrac{1-a^3}{1-a}-a\right):\dfrac{1-a^2}{1-a+a^3-a^2}\)
a) Rút gọn N
b) a bằng mấy để N < 0
c) Tìm a thuộc Z để N thuộc Z
\(A=\dfrac{9x^2-4}{4x^2-1+\left(2x+1\right)\left(x-1\right)}\)
a) Rút gọn A.
b) x bằng mấy để A > 0
c) Tìm x thuộc Z để A thuộc Z.
a. A=(3x-2)(3x+2)/(2x-1)(2x+1)+(2x+1)(x-1)=(3x-2)(3x+2)/(2x+1)(3x-2)=3x+2/2x+1
b. A>0
=>3x+2 lớn hơn hoặc bằng 2x+1
=>x lớn hơn hoặc bằng -1
c. Để A thuộc z thì 3x+2 chia hết cho 2x+1
=>x = -1/2
= 1+ x+1/2x+1 = 1+ 2x+1-x/2x+1=1+ 2x+1/2x+1 -x/2x+1
Cho biểu thức A=\(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
và B=\(\dfrac{x^2+x-2}{x^3-1}\)
a Rút gọn biểu thức M=A.B
b Tìm x thuộc Z để M thuộc Z
c Tìm GTLN của biểu thức N=\(A^{-1}-B\)
a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)
\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)
b. -Để M thuộc Z thì:
\(\left(x^2+x-2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)
\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)
\(\Rightarrow4⋮\left(x+3\right)\)
\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)
c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)
\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)
\(A=\left[\left(\dfrac{1}{x}+1\right)\cdot\dfrac{2}{x^3+3x^2+3x+1}+\dfrac{1}{1+2x+x^2}\cdot\left(1+\dfrac{1}{x^2}\right)\right]:\dfrac{x-1}{x^3}\)
a) Rút gọn
b) x bằng mấy để A = 3?
c) x thuộc Z, x bằng mấy để A thuộc Z?
A= \(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x-1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
a/ rút gọn A
b/ tìm x thuộc Z để A nguyên
c/ tính A vs x = -2, x = -3
d/ tìm x để A = 1
\(A=\dfrac{9x^2-4}{4x^2-1+\left(2x+1\right)\left(x-1\right)}\)
a) Rút gọn A.
b) x bằng mấy để A > 0
c) Tìm x thuộc Z để A thuộc Z.
Cho \(B=\left(1+\dfrac{\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a, Rút gọn B
b, Tìm a để B<1
c, Cho \(a=19-8\sqrt{3}\). Tính B
d, Tìm a ∈ Z để b ∈ Z
e, Tìm giá trị lớn nhất của M
cho A= n+1 / n-2
a, tìm n thuộc z để A thuộc z
b , tìm n thuộc z để A lớn nhât
cho B = 5/12 nhân -24 / 2x -1 + 16 nhân 3/ 4x -2
a. rút gọn B
b. tìm x thuộc z để B lớn nhất
c tìm x thuộc z để B thuộc z
a) Để A và n thuộc Z => n+1 chia hết cho n-2
A=(n-2+3) chia hết cho n-2
=> 3 chia hết cho n-2
lập bảng=> n thuộc {3,1,5,9,(-1)}
b) A lớn nhất khi n-2 nhỏ nhất=> n-2=1
=> n=3
Nhớ tk cho mk nha!
Bài 1: Cho A=\(\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\div\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) (x≥0; x≠9)
a, Rút gọn A
b, Tính A khi \(x=7+4\sqrt{3}\)
c, Tìm x để A=\(\dfrac{3}{5}\)
d, Tìm x để A>1
e, Tìm x∈Z để A∈Z
(a) Với \(x\ge0,x\ne9\), ta có: \(A=\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{2\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{3}{\sqrt{x}+3}.\)
(b) Ta có: \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
\(\Rightarrow\sqrt{x}=2+\sqrt{3}\).
Thay vào biểu thức \(A\) (thỏa mãn điều kiện), ta được: \(A=\dfrac{3}{2+\sqrt{3}+3}=\dfrac{3}{5+\sqrt{3}}\)
\(=\dfrac{3\left(5-\sqrt{3}\right)}{5^2-\left(\sqrt{3}\right)^2}=\dfrac{15-3\sqrt{3}}{22}.\)
(c) Để \(A=\dfrac{3}{5}\Rightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{3}{5}\)
\(\Rightarrow\sqrt{x}+2=5\Leftrightarrow x=9\) (không thỏa mãn).
Vậy: \(x\in\varnothing.\)
(d) Để \(A>1\Leftrightarrow A-1>0\Rightarrow\dfrac{3}{\sqrt{x}+3}-1>0\)
\(\Leftrightarrow\dfrac{1-\sqrt{x}}{\sqrt{x}+3}>0\Rightarrow1-\sqrt{x}>0\) (do \(\sqrt{x}+3>0\forall x\inĐKXĐ\))
\(\Rightarrow x< 1\). Kết hợp với điều kiện thì \(0\le x< 1.\)
(e) \(A\in Z\Rightarrow\dfrac{3}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+3=1\\\sqrt{x}+3=-1\\\sqrt{x}+3=3\\\sqrt{x}+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-2\left(VL\right)\\\sqrt{x}=-4\left(VL\right)\\\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\\\sqrt{x}=-6\left(VL\right)\end{matrix}\right.\)
Vậy: \(x=0.\)
A=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
a) Rút gọn A ( tìm đkxđ )
b)Tìm A khi x = 36
c)Tìm x để A= -1/3
d) Tìm x để A>0
e)Tìm x thuộc Z để A thuộc Z
ĐKXĐ: \(x\ge0;x\ne4\)
\(A=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b. \(x=36\Rightarrow A=\dfrac{\sqrt{36}}{\sqrt{36}-2}=\dfrac{6}{6-2}=\dfrac{3}{2}\)
c. \(A=-\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Rightarrow3\sqrt{x}=2-\sqrt{x}\)
\(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
d. \(A>0\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
e. \(A=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2=Ư\left(2\right)\)
\(\Rightarrow\sqrt{x}-2=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{0;1;3;4\right\}\Rightarrow x=\left\{0;1;9;16\right\}\)
a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b: Thay x=36 vào A, ta được:
\(A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\)
c: Để \(A=-\dfrac{1}{3}\) thì \(3\sqrt{x}=-\sqrt{x}+2\)
\(\Leftrightarrow4\sqrt{x}=2\)
hay \(x=\dfrac{1}{4}\)
d: Để A>0 thì \(\sqrt{x}-2>0\)
hay x>4
e: Để A nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{-1;1;2;-2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;4;0\right\}\)
hay \(x\in\left\{1;9;16;0\right\}\)