phân tích thành nhân tử
a)4 x^2-1/9
b)3x^2-6x+3
c)ax-4x+2a-8
d) x^2-2xy+y^2-16
phân tích đa thức sau thành nhân tử
a\(12x^3y-24x^2y^2+12xy^3\)
b\(x^2-6x+xy-6y\)
c\(2x^2+2xy-x-y\)
d\(ax-2x-a^2+2a\)
e\(x^3-3x^2+3x-1\)
f\(3x^2-3y^2-12x-12y\)
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Phân tích đa thức thành nhân tử - nhóm :
a) x^2 -6x - y^2 + 9.
b) 9 - x^2 + 2xy - y^2.
c) ax - ay + bx - by.
d) ax + a - bx - b + cx + c.
e) 3x^2 - 3y^2 - 2(x - y)^2.
f) 3a^2b^2 + bd + 3abc + acd.
g) x^3 - 2x^2 - x + 2.
h) 1 - 2a + 2bc + a^2 - b^2 - c^2.
a) \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3-y\right)\left(x-3+y\right)\)
b) \(9-x^2+2xy-y^2\)
\(=9-\left(x^2-2xy+y^2\right)\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
c) \(ax-ay+bx-by\)
\(=a\left(x-y\right)+b\left(x-y\right)\)
\(=\left(x-y\right)\left(a+b\right)\)
phân tích thành nhân tử
b. x^2+2xy+y^2-16
c. 3x^2+5x-3xy-5y
d. 4x^2-6x^3y-2x^2+8x
e. x^2-4-2xy+y^2
k. x^2-y^2-z^2-2yz
m. 6xy+5x-5y-3x^2-3y^2
b)x2+2xy+y2-16=(x+y)2-42=(x+y+4)(x+y-4)
c)3x2+5x-3xy-5y=x(3x+5)-y(3x+5)=(3x+5)(x-y)
d)4x2-6x3y-2x2+8x=2x(2x-3x2y-x+4)
e)x2-4-2xy+y2=(x2-2xy+y2)-4=(x-y)2-22=(x-y-2)(x-y+2)
k)x2-y2-z2-2yz=x2-(y+z)2=(x-y-z)(x+y+z)
m)6xy+5x-5y-3x2-3y2=3(x2-2xy+y2)+5(x-y)=3(x-y)2+5(x-y)=(x-y)(3x-3y+5)
b. (x^2+2xy+y^2)-16 =(x+y)^2-16=(x+y+4)(x+y-4)
Phân tích các đa thức sau thành nhân tử
a) \(^{ }3xy-6xy^2\)
b) \(^{ }3x^3+6x^2+3x\)
c) \(^{ }x^3-x^2+2\)
d) \(^{ }x^2+4x+4-y^2\)
e) \(^{ }x^3+4x^2+4x\)
f) \(^{ }x^2+2x+1-9y^2\)
g) \(^{ }6x^2-12x\)
h) \(^{ }x^3+2x^2-x\)
i) \(^{ }x^2-2xy+y^2-9\)
j) \(^{ }x^2+x-6\)
k) \(^{ }2x^3+2x^2y-4xy^2\)
l) \(^{ }x^3-4x^2-12x+27\)
a) \(3xy-6xy^2=3xy\left(1-2y\right)\)
b) \(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)
c) \(x^3-x^2+2\)
d) \(x^2+4x+4-y^2=\left(x^2+4x+4\right)-y^2=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)
e) \(x^3+4x^2+4x=x\left(x^2+4x+4\right)=x\left(x+2\right)^2\)
f) \(x^2+2x+1-9y^2=\left(x+1\right)^2-\left(3y\right)^2=\left(x-3y+1\right)\left(x+3y+1\right)\)
g) \(6x^2-12x=6x\left(x-2\right)\)
h) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
i) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
k) \(2x^3+2x^2y-4xy^2=2x\left(x^2+xy-2y^2\right)\)
l) \(x^3-7x^2+9x+3x^2-21x+27=x\left(x^2-7x+9\right)+3\left(x^2-7x+9\right)=\left(x+3\right)\left(x^2-7x+9\right)\)
phân tích đa thức thành nhân tử
a,x^2+6x+8 b,3x^2-2(x-y)^2-3y^2 c,4x^2-9y^2+4x-6y
d,x(x+1)^2+x(x-5)-5(x+1)^2 e,2xy-x^2+3y^2-4y+1 f,4x^16+81
g,x^8+x^4+1
a) x² + 6x + 8
= x² + 2x + 4x + 8
= (x² + 2x) + (4x + 8)
= x(x + 2) + 4(x + 8)
= (x + 2)(x + 4)
b) 3x² - 2(x - y)² - 3y²
= (3x² - 3y²) - 2(x - y)²
= 3(x² - y²) - 2(x - y)²
= 3(x + y)(x - y) - 2(x - y)²
= (x - y)[3(x + y) - 2(x - y)]
= (x - y)(3x + 3y - 2x + 2y)
= (x - y)(x + 5y)
c) 4x² - 9y² + 4x - 6y
= (4x² - 9y²) + (4x - 6y)
= (2x - 3y)(2x + 3y) + 2(2x - 3y)
= (2x - 3y)(2x + 3y + 2)
d) x(x + 1)² + x(x - 5) - 5(x + 1)²
= [x(x + 1)² - 5(x + 1)²] + x(x - 5)
= (x + 1)²(x - 5) + x(x - 5)
= (x - 5)[(x + 1)² + x]
= (x - 5)(x² + 2x + 1 + x)
= (x - 5)(x² + 3x + 1)
e) 2xy - x² + 3y² - 4y + 1
= -x² + 2xy - y² + 4y² - 4y + 1
= -(x² - 2xy + y²) + (4y² - 4y + 1)
= -(x - y)² + (2y - 1)²
= (2y - 1)² - (x - y)²
= (2y - 1 - x + y)(2y - 1 + x - y)
= (3y - x - 1)(x + y - 1)
f) 4x¹⁶ + 81
= (2x⁸)² + 2.2x⁸.9 + 9² - 2.2x⁸.9
= (2x⁸ + 9)² - 36x⁸
= (2x⁸ + 9) - (6x⁴)²
= (2x⁸ + 9 - 6x⁴)(2x⁸ + 9 + 6x⁴)
= (2x⁸ - 6x⁴ + 9)(2x⁸ + 6x⁴ + 9)
Phân tích đa thức thành nhân tử
a) (4x^2 - 3x - 18)^2 - (4x^2 + 3x)^2
b) 9(x + y - 1)^2 - 4(2x + 3y +1)^2
c) -4x^2 + 12xy - 9y^2 + 25
d) x^2 - 2xy + y^2 - 4m^2 + 4mn - n^2
a) Ta có: \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)
\(=\left(-6x-18\right)\left(8x^2-18\right)\)
\(=-6\left(x+3\right)\cdot2\left(4x^2-9\right)\)
\(=-12\left(x+3\right)\left(2x-3\right)\left(2x+3\right)\)
b) Ta có: \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=-\left(x+3y+5\right)\left(7x+9y-1\right)\)
c) Ta có: \(-4x^2+12xy-9y^2+25\)
\(=-\left(4x^2-12xy+9y^2-25\right)\)
\(=-\left[\left(2x-3y\right)^2-25\right]\)
\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)
d) Ta có: \(x^2-2xy+y^2-4m^2+4mn-n^2\)
\(=\left(x^2-2xy+y^2\right)-\left(4m^2-4mn+n^2\right)\)
\(=\left(x-y\right)^2-\left(2m-n\right)^2\)
\(=\left(x-y-2m+n\right)\left(x-y+2m-n\right)\)
a) (4x2-3x-18)2-(4x2+3x)2
=(4x2-3x-18-4x2-3x)(4x2-3x-18+4x2+3x)
=(-6x-18)(8x2-18)
=-48x3+108x-144x2+324
phân tích đa thức thành nhân tử
a) 2x^2 - 2y^2
b) x^2 -4x + 4
c) x^2 + 2x + 1 - y^2
d) x^2 - 4x
e) x^2 + 10x + 25
g) x^2 -2xy + y ^2 - 9
h) 2x^2 - 2
i) 5x^2 - 5xy + 9x - 9y
k) y^2 - 4y + 4 - x^2
l)x^2 - 16
m) 3x^2 -3xy +2x - 2y
o) 3x^4 - 6x ^3 + 3x^2
a) \(2x^2-2y^2\)
\(=2\left(x^2-y^2\right)\)
\(=2\left(x-y\right)\left(x+y\right)\)
b) \(x^2-4x+4\)
\(=x^2-2\cdot x\cdot2+2^2\)
\(=\left(x-2\right)^2\)
c) \(x^2+2x+1-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x-y+1\right)\left(x+y+1\right)\)
d) \(x^2-4x\)
\(=x\left(x-4\right)\)
e) \(x^2+10x+25\)
\(=x^2+2\cdot x\cdot5+5^2\)
\(=\left(x+5\right)^2\)
g) \(x^2-2xy+y^2-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
h) \(2x^2-2\)
\(=2\left(x^2-1\right)\)
\(=2\left(x-1\right)\left(x+1\right)\)
i) \(5x^2-5xy+9x-9y\)
\(=5x\left(x-y\right)+9\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+9\right)\)
k) \(y^2-4y+4-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-x-2\right)\left(y+x-2\right)\)
l) \(x^2-16\)
\(=x^2-4^2\)
\(=\left(x-4\right)\left(x+4\right)\)
m) \(3x^2-3xy+2x-2y\)
\(=3x\left(x-y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+2\right)\)
o) \(3x^4-6x^3+3x^2\)
\(=3x^2\left(x^2-2x+1\right)\)
\(=3x^2\left(x-1\right)^2\)
a) 2x2 - 2y2
= (2x - 2y)(2x + 2y)
= 4(x - y)(x + y)
b) x2 - 4x + 4
= (x - 2)2
c) x2 + 2x + 1 - y2
= (x + 1)2 - y2
= (x + 1 - y)(x + 1 + y)
d) x2 - 4x
= x(x - 4)
e) x2 +10x + 25
= (x + 5)2
g) x2 - 2xy + y2 - 9
= (x - y)2 - 32
= (x - y - 3)(x - y + 3)
h) 2x2 - 2
= 2(x2 - 1)
= 2(x - 1)(x + 1)
i) 5x2 - 5xy + 9x - 9y
= 5x(x - y) + 9(x- y)
= (5x + 9)(x - y)
k) y2 - 4y + 4 - x2
= (y - 2)2 - x2
= (y - 2 - x)(y - 2 + x)
l) x2 - 16
= x2 - 42
= (x - 4)(x + 4)
m) 3x2 - 3xy + 2x -2y
= 3x(x - y) +2(x-y)
= (3x + 2)(x - y)
o) 3x4 - 6x3 + 3x2
= 3x4 - 3x3 - 3x3 + 3x2
= 3x3(x - 1) - 3x2(x - 1)
= (3x3 - 3x2)(x - 1)
= 3x2(x - 1)(x - 1)
= 3x2.(x - 1)2
Bài 1: Rút gọn biểu thức
A, ( x – 3 )^2 – ( x + 2 )^2
B, ( 4x^2 + 2xy + y^2 )( 2x – y ) – ( 2x + y )( 4x^2 – 2xy + y^2 )
C, ( 2x + 1 )^2 + 2( 4x^2 – 1 ) + ( 2x – 1 )^2
D, ( x – 3 )( x + 3 ) – ( x – 3 )
Bài 2: Phân tích đa thức thành nhân tử
A, a^2 – ab + a – b
B, m^4 – n^6
C, x^2 + 6x + 8
D, 2x^2 + 4x + 2 – 2y^2
Bài 3: Tìm x
A, x^2 – 16 = 0
B, x^4 – 2x^3 + 10x^2 – 20x = 0
C, 15 – 2x – x^2 = 0
D, ( x^2 – 1/2x ) : 2x – ( 3x – 1 ) : ( 3x – 1 ) = 0
Giúp em với ạ !!!
A) \(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)
\(=-5.\left(2x-1\right)\)
B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)
\(=8x^3-y^3-8x^3-y^3\)
\(=-2y^3\)
C) \(x^2+6x+8\)
\(=x^2+6x+9-1\)
\(=\left(x+3\right)^2-1\)
\(=\left(x+3-1\right)\left(x+3+1\right)\)
\(=\left(x+2\right)\left(x+4\right)\)
bài 3 A) \(x^2-16=0\)
\(\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
B) \(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Phân tích đa thức thành nhân tử
1) 2xy^3-6x^2+10xy
2) a^6-a^5-2a^3+2a^2
3) (a+b)^3-(a-b)^3
4) x^3-3x^2+3x-1-y^3
5) y(x^2+1)-x(y^2+1)
1) \(2xy^3-6x^2+10xy\)
\(=2x.y^3-2x.3x+2x.5y\)
\(=2x\left(y^3-3x+5y\right)\)
\(=2x[y\left(y^2-5\right)-3x]\)
2) \(a^6-a^5-2a^3+2a^2\)
\(=\left(a^6-a^5\right)-\left(2a^3-2a^2\right)\)
\(=\left(a^5.a-a^5.1\right)-\left(2a^2.a-2a^2.1\right)\)
\(=a^5\left(a-1\right)-2a^2\left(a-1\right)\)
\(=\left(a^5-2a^2\right)\left(a-1\right)\)
\(=a^2\left(a^3-2\right)\left(a-1\right)\)
3: \(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2b\left(3a^2+b^2\right)\)