giúp mik vs
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H\(\in\) BC)*. Tìm góc bằng góc B
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). TÌm góc bằng góc B
Tham Khảo:
https://olm.vn/hoi-dap/detail/86010246553.html
Có thể tìm góc B bằng hai cách:
Cách 1
Ta có: ∠(A1 ) + ∠(A2 ) = ∠(BAC) = 90o(1)
Vì ΔAHB vuông tại H nên:
∠B + ∠(A1) = 90o(tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra ∠B = ∠(A2 )
Cách 2
Vì ΔABC vuông tại A nên:
∠B +∠C = 90o (theo tính chất tam giác vuông) (1)
Vì ΔAHC vuông tại H nên:
∠(A2 ) + ∠C = 90o (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: ∠B = ∠(A2)
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). Tìm góc bằng góc B.
Có thể tìm góc B bằng hai cách:
Cách 1
Ta có: ∠(A1 ) + ∠(A2 ) = ∠(BAC) = 90o(1)
Vì ΔAHB vuông tại H nên:
∠B + ∠(A1) = 90o(tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra ∠B = ∠(A2 )
Cách 2
Vì ΔABC vuông tại A nên:
∠B +∠C = 90o (theo tính chất tam giác vuông) (1)
Vì ΔAHC vuông tại H nên:
∠(A2 ) + ∠C = 90o (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: ∠B = ∠(A2)
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (\(H\in BC\)).
Tìm góc bằng góc B ?
đề kiểm tra 1 tiết toán hình nè bà con
ai xem rồi thì tick zùm mình nha
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC, H thuộc BC
A/ Chứng minh rằng BAH bằng ACB
B/ Tia phân giác của góc BAH cắt BC tại D. Chứng minh rằng CDA bằng CAD.
giúp mik vs cần gấp ai nhanh đúng mik tick cho thanks
,help .
Tam giác ABC vuông tại A ⇒⇒ góc B + góc C = 90 độ
Tam giác AHB vuông tại H ⇒⇒ góc B + góc BAH = 90 độ
Suy ra góc C = góc BAH (cùng phụ góc B)
a,
Tam giác ABC vuông tại A nên
BACˆ=90∘⇔BAHˆ+HACˆ=90∘
Tam giác AHC vuông tại H nên
AHCˆ=90∘⇔ACHˆ+HACˆ=90∘⇒BAHˆ=ACBˆ=90∘−HACˆb,
Chứng minh tương tự phần a ta có:
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). TÌm góc bằng góc B
Ta có:
góc BAH + góc HAC= 90độ (tam giác ABC vuông tại H)
Mà góc BAH + góc ABH =90độ (tam giác ABH vuông tại H)
=>góc ABH= góc HAC
Vậy góc B = góc HAC
cái tam giác mik vẽ là tam giác vuông cân nên góc B = góc C
nếu là tam giác thường thì khi đó:
kẻ đường thẳng sog song với AB đí qua H cắt AC tại K ( theo hibhf vẽ)
khi đó theo tính chất 2 đường thẳng song song sẽ có HK // BA
mà BA vuông góc tại AC( tam giác ABC vuông tại A)
=> HK vuông góc với AC
theo tính chất đồng vị => góc B = góc CHK
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). Tìm góc bằng góc B
Hình tự vẽ
Xét tam giác ABC có \(\widehat{A}=90^o=>\widehat{B}+\widehat{C}=90^o\)
Xét tam giác HAC có \(\widehat{AHC}=90^o=>\widehat{C}+\widehat{HAC}=90^o\)
Từ 2 điều trên => \(\widehat{B}=\widehat{HAC}\)
Cho tam giác ABC vuông góc tại a kẻ phân giác BD của góc B D thuộc ac Kẻ AH vuông góc với BC H thuộc BC ah cắt BC tại E
A) chứng minh tam giác BHA bằng tam giác BHE
b)CM:ED VUÔNG GÓC BC
C)AD<DC
a) Sửa đề: Trên HC lấy E sao cho HE=HB và c/m ΔBHA=ΔEHA
Xét ΔBHA vuông tại H và ΔEHA vuông tại H có
AH chung
BH=EH(gt)
Do đó: ΔBHA=ΔEHA(hai cạnh góc vuông)
a) Sửa đề: Trên HC lấy E sao cho HE=HB
tam giác BHA=tam giác EHA(c.g.c)
tam giác BDA=tam giác BDE(ch-gn)
suy ra góc A=góc E=90 độ và AD=ED
suy ra DE vuông góc với BC
Áp dung định lí pitago vào tam giác DEC có góc E=90 độ
DC^2=DE^2+CE^2
suy ra DC > DE
mà DE = DA
suy ra DC>DA
Cho tam giác ABC, kẻ AH vuông góc với BC. Gọi H là trung điểm cạnh BC. Biết AH, AM chia góc ở đỉnh A của tam giác thành 3 góc bằng nhau. tính các góc của tam giác ABC
GIÚP MIK VS NGÀY MAI MIK NỘP RỒI !!!!
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
a) C/m: tam giác AHB= tam giác AHC
b) Kẻ HM vuông góc với AB tại M. Kẻ HN vuông góc với C tại N. C/m: tam giác AMN cân
c) C/m: AH vuông góc với MN
Giải nhanh giúp mik với ạ. Mai mik phải thi rồi🥺🥺
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Xét ΔAHM vuông tại M và ΔAHN vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAHM=ΔAHN
Suy ra: AM=AN
hay ΔAMN cân tại A
c: Ta có: AM=AN
HM=HN
Do đó: AH là đường trung trực của MN
hay AH⊥MN
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
cạnh AH chung
AB=AC(vì tam giác ABC cân tại A)
=> ΔAHB=ΔAHC(c.h-c.g.v)
Xét ΔAHM vuông tại M và ΔAHN vuông tại N có
\(\widehat{HAM}=\widehat{HAN}\)
cạnh AH chung
==> ΔAHM=ΔAHN(c.h-g.n)
==> AM=AN
=> ΔAMN cân tại A ( dấu hiệu)
c)Ta có:HM=HN ; AM=AN
===>AH là đường trung trực của MN
=>\(\text{AH⊥MN}\)
Cho tam giác ABC vuông tại A đường cao AH . gọi E,F lần lượt là chân đường vuông góc . kẻ từ H đến AB,AC
a/ Tứ giác EAFH là hình gì?
b/ Qua A kẻ đường vuông góc với EF cắt BC ở I . chứng minh I là trung điểm BC. Giúp mik vs 😥
a) Xét tứ giác EAFH có
\(\widehat{AFH}=90^0\)
\(\widehat{FAE}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: EAFH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: \(\widehat{IAC}=90^0-\widehat{AFE}\)
\(\widehat{ICA}=90^0-\widehat{B}\)
mà \(\widehat{AFE}=\widehat{B}\left(=\widehat{HAC}\right)\)
nên \(\widehat{IAC}=\widehat{ICA}\)
mà \(\widehat{IBA}=90^0-\widehat{ICA}\)
và \(\widehat{IAB}=90^0-\widehat{IAC}\)
nên \(\widehat{IAB}=\widehat{IBA}\)
Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)
nên ΔIAB cân tại I(Định lí đảo của tam giác cân)
Xét ΔIAC có \(\widehat{IAC}=\widehat{ICA}\)(cmt)
nên ΔIAC cân tại I(Định lí đảo của tam giác cân)
Ta có: IA=IB(ΔIAB cân tại I)
IA=IC(ΔIAC cân tại I)
Do đó: IB=IC
mà I nằm giữa B và C
nên I là trung điểm của BC(Đpcm)