Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Cẩm Tú
Xem chi tiết
Nguyễn Huy Tú
17 tháng 4 2021 lúc 22:27

\(\left(\dfrac{\dfrac{x}{x+1}}{\dfrac{x^2}{x^2+x+1}}-\dfrac{2x+1}{x^2+x}\right)\dfrac{x^2-1}{x-1}\)ĐK : \(x\ne\pm1\)

\(=\left(\dfrac{x}{x+1}.\dfrac{x^2+x+1}{x^2}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)=\left(\dfrac{x^2+x-1}{x^2+x}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)\)

\(=\left(\dfrac{x^2+x-1-2x-1}{x\left(x+1\right)}\right)\left(x+1\right)=\dfrac{x^2-3x-2}{x}\)

Nguyễn Huy Tú
17 tháng 4 2021 lúc 22:32

à xin lỗi mình nhầm dòng cuối 

\(=\dfrac{x^2-x-2}{x}=\dfrac{\left(x+1\right)\left(x-2\right)}{x}\)

Để biểu thức trên nhận giá trị dương khi 

\(\dfrac{\left(x+1\right)\left(x-2\right)}{x}>0\)bạn tự xét TH cả tử và mẫu nhé, mình đánh trên này bị lỗi 

 

 

Hoàng Huy
Xem chi tiết
Hoàng Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 20:03

a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(=\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x^2-x-2\right)}{x^2}\)

\(=\dfrac{x\left[x^2-4x+4+4x\right]}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x+1}{2x}\)

b) Thay \(x=\dfrac{1}{2}\) vào P, ta được:

\(P=\dfrac{1}{2}+1=\dfrac{3}{2}\)

nguyễn thị thanh kiều
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 11:23

Bạn ghi lại đề đi bạn. Khó hiểu quá!

Châu Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 1 2022 lúc 7:11

a: ĐKXĐ:\(x\notin\left\{2;0\right\}\)

b: \(C=\left(\dfrac{x\left(2-x\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{2-x^2+x}{x^2}\right)\)

\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}=\dfrac{x+1}{2x}\)

c: Thay x=2017 vào C, ta được:

\(C=\dfrac{2017+1}{2\cdot2017}=\dfrac{1009}{2017}\)

Vũ Thảo Nhi
Xem chi tiết
Hồ Lê Thiên Đức
24 tháng 5 2022 lúc 10:13

a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}

Thay x = 2, ta có B không tồn tại

Thay x = -1, ta có B = \(\dfrac{1}{3}\)

b)ĐKXĐ:x ≠ 2,-2

Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x

Do đó không tồn tại x thỏa mãn đề bài

Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
ThanhNghiem
Xem chi tiết
HT.Phong (9A5)
7 tháng 10 2023 lúc 12:04

a) \(C=\left(\dfrac{x}{x^2-x-6}-\dfrac{x-1}{3x^2-4x-15}\right):\dfrac{x^4-2x^2+1}{3x^2+11x+10}\cdot\left(x^2-2x+1\right)\) (ĐK: \(x\ne-\dfrac{5}{3};x\ne3;x\ne-2;x\ne1\))

\(C=\left[\dfrac{x}{\left(x-3\right)\left(x+2\right)}-\dfrac{x-1}{\left(x-3\right)\left(3x+5\right)}\right]:\dfrac{\left(x^2-1\right)^2}{\left(3x+5\right)\left(x+2\right)}\cdot\left(x-1\right)^2\)

\(C=\left[\dfrac{x\left(3x+5\right)}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(3x+5\right)\left(x+2\right)}\right]\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)

\(C=\dfrac{3x^2+5x-x^2-2x+x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)

\(C=\dfrac{2x^2+4x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)

\(C=\dfrac{2\left(x+1\right)^2}{\left(3x+5\right)\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)

\(C=\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}\)

b) Thay x = 2003 ta có: 

\(C=\dfrac{2}{\left(2003-1\right)^4\left(2003-3\right)}=\dfrac{2}{2002^4\cdot2000}=\dfrac{1}{2002^4\cdot1000}\)

c) \(C>0\) khi: 

\(\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}>0\) mà: \(\left\{{}\begin{matrix}2>0\\\left(x-1\right)^4>0\end{matrix}\right.\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\) (đpcm) 

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 14:52

\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Có