PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ: \(\left(x^2+8x+7\right).\left(x+3\right).\left(x+5\right)+15\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\)
=(x^2+8x)^2+23(x^2+8x)+135
Cái này ko phân tích được nha bạn
\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\\ \Leftrightarrow\left(x^4+8x^3+15x^2+8x^3+64x^2+120x+8x^2+64x+120\right)+15\\ \Leftrightarrow x^4+16x^3+87x^2+184x+135\)
Gọi `A=(x^2+8x+8)(x^2+8x+15)+15`
Đặt `t=x^2+8x+11,5`
`=>A=(t-3,5)(t+3,5)+15=t^2-3,5^2+15=t^2-2,75=(t-sqrt(2,75))(t+sqrt(2,75))=(x^2+8x+11,5-(sqrt11)/2)(x^2+8x+11,5+(sqrt11)/2)=(x^2+8x+(23-\sqrt11)/2)(x^2+8x+(23+\sqrt11)/2)`
PHÂN TÍCH CÁC ĐA THỨC SAU THÀNH NHÂN TỬ
c) \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
d) \(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)
c) Đặt \(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1,5=a\)
\(\Rightarrow A=\left(a-0,5\right)\left(a+0,5\right)-6\)
\(\Rightarrow A=a^2-0,25-6\)
\(\Rightarrow A=a^2-\frac{25}{4}\)
\(\Rightarrow A=\left(a-\frac{5}{2}\right)\left(a+\frac{5}{2}\right)\)
Thay \(a=x^2+3x+0,5\)vào A ta có :
\(A=\left(x^2+3x+0,5-\frac{5}{2}\right)\left(x^2+3x+0,5+\frac{5}{2}\right)\)
\(A=\left(x^2+3x-2\right)\left(x^2+3x+3\right)\)
c, Đặt \(x^2+3x+2=a\)
Ta có : \(\left(a-1\right)a-6=a^2-a-6=\left(a^2-3a\right)+\left(2a-6\right)\)
\(=a\left(a-3\right)+2\left(a-3\right)\)
\(=\left(a+2\right)\left(a-3\right)\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)
Câu d làm tương tự .
Gợi ý : (x+3)(x+5) = x2 + 8x + 15
đặt bằng a rồi giải tiếp
d) Đặt \(B=\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(B=\left(x^2+8x+7\right)\left(x^2+5x+3x+15\right)+15\)
\(B=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(a=x^2+8x+11\)
\(\Rightarrow B=\left(a-4\right)\left(a+4\right)+15\)
\(\Rightarrow B=a^2-16+15\)
\(\Rightarrow B=a^2-1\)
\(\Rightarrow B=\left(a-1\right)\left(a+1\right)\)
Thay \(a=x^2+8x+11\)vào B ta có :
\(B=\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)
\(B=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
Phân tích đa thức thành nhân tử:
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
(x+1)(x+3)(x+5)(x+8)+15
=[(x+1)(x+7)][(x+3)(x+5)]+15
=(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
=>x2+8x+15=t+8
=>(x2 +8x+7)(x2+8x+15)+15
=t(t+8)+15
=t2+8t+15
=t2+3t+5t+15
=t(t+3)+5(t+3)
=(t+3)(t+5)
=(x2+8x+10)(x2+8x+12)
Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(\Rightarrow A=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+11=t\)
\(\Rightarrow A=\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t+1\right)\left(t-1\right)\)
\(=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x^2+2x+6x+12\right)\left(x^2+8x+10\right)\)\(=\left[x\left(x+2\right)+6\left(x+2\right)\right]\left(x^2+8x+10\right)\)
\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
PHÂN TÍCH ĐA THỨC SAU THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT BIẾN PHỤ
a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2.\)
b) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
c) \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
d) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
b/ Đặt x2 + x + 1 = a thì đa thức ban đầu thành
a(a + 1) - 12 = a2 + a - 12 = (a2 - 3a) + (4a - 12)
= (a - 3)(a + 4)
Phân tích đa thức thành nhân tử
A = \(\left(x^2-8x+2\right)\left(x^2-8x+6\right)-5\)
Đặt \(x^2-8x+4=t\)
Ta có:\(A=\left(t-2\right)\left(t+2\right)-5=t^2-4-5=t^2-9=\left(t-3\right)\left(t+3\right)\)
Hay \(A=\left(x^2-8x+1\right)\left(x^2-8x+7\right)\)
\(A=\left(x^2-8x+1\right)\left(x-7\right)\left(x-1\right)\)
Cái này nếu phân tích thành nhân tử tiếp thì phức tạp lắm,bạn để như thế này thì gọn hơn
Nếu phân tích ra thì được như thế này:
\(x^2-8x+1=-\left(x+\sqrt{10}+4\right)\left(x+\sqrt{10}-4\right)\)
phân tích đa thức thành nhân tử:
\(8\left(x^2+3x+5\right)^2+7\left(x^2+3x+5\right)-15\)
Đặt a=x2+3x+5
ta có \(8a^2+7a-15\)
\(=8a^2-8a+15a-15=8a\left(a-1\right)+15\left(a-1\right)\)
\(=\left(8a+15\right)\left(a-1\right)\)
Trả lại biến
\(\left(8x^2+24x+40+15\right)\left(x^2+3x+5-1\right)\)
\(=\left(8x^2+24x+55\right)\left(x^2+3x+4\right)\)
Phân tích đa thức thành nhân tử:
a) \(\left(xy\right)^2-xy-2\)
b) \(x^4-8x^3-16x^2+2\left(x^2-4x+4\right)-43\)
Lời giải:
a.
$(xy)^2-xy-2=(x^2y^2+xy)-(2xy+2)$
$=xy(xy+1)-2(xy+1)=(xy+1)(xy-2)$
b. Bạn xem lại đoạn $-16x^2$ là dấu - hay + vậy?
\(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(\left(x^2+2x\right)^2+9x^2+18x+20\)
\(\left(x^2+3x+1\right)\left(x^2+3x+1\right)-6\)
\(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)
Phân tích đa thức thành nhân tử
Phân tích đa thức thành nhân tử:
a)\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
b)\(x^7+x^2+1\)
c)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
d)\(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)
e)\(x^2-2xy+y^2+3x-3y-10\)
a)\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)-b\text{[}\left(b^3-c^3\right)+\left(a^3-b^3\right)\text{]}+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)
\(=\left(a-b\right)\left(b^3-c^3\right)-\left(b-c\right)\left(a^3-b^3\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(bc+c^2-a^2-ab\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
phân tích đa thức thành nhân tử:
a. \(ax^2-a^2x-x+a\)
b. \(18x^3-12x^2+2x\)
c. \(x^3-5x^2-4x+20\)
d. \(\left(x+7\right)\left(x+15\right)+15\)
\(a.\) \(ax^2-a^2x-x+a\)
\(=\left(ax^2-a^2x\right)-\left(x-a\right)\)
\(=ax\left(x-a\right)-\left(x-a\right)\)
\(=\left(ax-1\right)\left(x-a\right)\)
\(b.\) \(18x^3-12x^2+2x\)
\(=2x\left(9x^2-6x+1\right)\)
\(=2x\left(3x-1\right)^2\)
\(c.\) \(x^3-5x^2-4x+20\)
\(=\left(x^3-5x^2\right)-\left(4x-20\right)\)
\(=x^2\left(x-5\right)-4\left(x-5\right)\)
\(=\left(x^2-4\right)\left(x-5\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)
\(d.\) \(\left(x+7\right)\left(x+15\right)+15\)
\(=x^2+15x+7x+105+15\)
\(=x^2+22x+120\)
\(=\left(x+10\right)\left(x+12\right)\)