Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
FAN ST - Hiha
Xem chi tiết
TV Cuber
6 tháng 5 2022 lúc 22:28

a)\(\dfrac{a}{b}=5-\dfrac{3}{5}=\dfrac{25}{5}-\dfrac{3}{5}=\dfrac{22}{5}\)

b)\(\dfrac{a}{b}=\dfrac{5}{6}+\dfrac{4}{7}=\dfrac{35}{42}+\dfrac{24}{42}=\dfrac{59}{42}\)

c)\(\dfrac{a}{b}=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{3}{5}\times\dfrac{3}{2}=\dfrac{9}{10}\)

TV Cuber
6 tháng 5 2022 lúc 22:30

d)\(\dfrac{a}{b}=3\times\dfrac{2}{7}=\dfrac{6}{7}\)

e)\(\dfrac{a}{b}=\dfrac{7}{5}-\left(\dfrac{2}{5}\times\dfrac{1}{2}\right)=\dfrac{7}{5}-\dfrac{1}{5}=\dfrac{6}{5}\)

lê min hy
8 tháng 5 2022 lúc 15:14

a 22/5

b 59/42

c 9/10

d 6/7

e 6/5

Thiên Yết
Xem chi tiết
tthnew
25 tháng 1 2021 lúc 17:54

a) Ta có:

\(a^2+b^2+c^2\ge ab+bc+ca\)

 \(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{9}\ge\dfrac{\left(ab+bc+ca\right)}{3}\)

\(\Leftrightarrow\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ca}{3}}\)

Đẳng thức xảy ra khi $a=b=c.$

b) BĐT \(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

Hay là \(2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\),

đúng.

Đẳng thức xảy ra khi $a=b=c.$

c) \(\Leftrightarrow\dfrac{\left(x^2+2\right)^2}{x^2+1}\ge4\Leftrightarrow x^4+4x^2+4\ge4x^2+4\Leftrightarrow x^4\ge0\)

Đẳng thức xảy ra khi $x=0.$

d) Xét hiệu hai vế đi bạn.

Thiên Yết
25 tháng 1 2021 lúc 17:32

Chứng minh:

a, \(a^3+b^3+c^3\dfrac{>}{ }3abc\)

b,\(abc\dfrac{< }{ }\left(\dfrac{a+b+c}{3}\right)^3\)

c,\(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\dfrac{< }{ }a+b+c\)

d,\(\dfrac{a}{b+c}+\dfrac{c}{a+b}+\dfrac{b}{a+c}\dfrac{>}{ }\dfrac{3}{2}\left(a,b,c>0\right)\)

Sách Giáo Khoa
Xem chi tiết
Quang Duy
31 tháng 3 2017 lúc 18:28

a) = =

b) = = = . ( Với điều kiện b # 1)

c) \(\dfrac{a^{\dfrac{1}{3}}b^{-\dfrac{1}{3}-}a^{-\dfrac{1}{3}}b^{\dfrac{1}{3}}}{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)= = = ( với điều kiện a#b).

d) \(\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}\) = = = =


 

Nguyễn Hải Vân
Xem chi tiết
Phạm Lợi
Xem chi tiết
đề bài khó wá
3 tháng 1 2019 lúc 18:49

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

Akai Haruma
4 tháng 1 2019 lúc 0:56

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Akai Haruma
4 tháng 1 2019 lúc 0:59

Bài 2:

Thay $1=a+b+c$ và áp dụng BĐT AM-GM ta có:

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\)

\(=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{abc}\)

\(\geq \frac{4\sqrt[4]{a.a.b.c}.4\sqrt[4]{b.a.b.c}.4\sqrt[4]{c.a.b.c}}{abc}=\frac{64abc}{abc}=64\)

Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

Trần Duy Quân
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Lightning Farron
31 tháng 3 2017 lúc 22:09

cái này tương tự này, do dài quá nên ngại làm, bn tham khảo nhé Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

FAN ST - Hiha
Xem chi tiết
Chuu
5 tháng 5 2022 lúc 20:34

\(\dfrac{a}{b}=\dfrac{5}{9}:\dfrac{2}{3}\)

\(\dfrac{a}{b}=\dfrac{5}{6}\)

 

\(\dfrac{a}{b}=4+\dfrac{2}{3}\)

\(\dfrac{a}{b}=\dfrac{14}{3}\)

TV Cuber
5 tháng 5 2022 lúc 20:35

a)\(\dfrac{a}{b}=\dfrac{5}{9}:\dfrac{2}{3}=\dfrac{5}{9}\times\dfrac{3}{2}=\dfrac{5}{6}\)

b)\(\dfrac{a}{b}=4+\dfrac{2}{3}=\dfrac{12}{3}+\dfrac{2}{3}=\dfrac{14}{3}\)

Nguyễn Phương Anh
Xem chi tiết

b,     B        =                       \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\)  + \(\dfrac{1}{2^3}\) -   \(\dfrac{1}{2^4}\)+.....+ \(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)

\(\times\)  B       =                 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) -  \(\dfrac{1}{2^3}\) + \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)

\(\times\) B + B  =                1  -  \(\dfrac{1}{2^{100}}\)

3B             =              ( 1 - \(\dfrac{1}{2^{100}}\)

             B =               ( 1 - \(\dfrac{1}{2^{100}}\)) : 3

       A              =          1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)\(\dfrac{1}{3^3}\)+......+ \(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\) 

A\(\times\)  3             =   3 +  1 + \(\dfrac{1}{3}\) +  \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^2}\)+....+  \(\dfrac{1}{3^{n-1}}\) 

\(\times\) 3 - A        = 3 - \(\dfrac{1}{3^n}\)

       2A           = 3  - \(\dfrac{1}{3^n}\)

         A           = ( 3 - \(\dfrac{1}{3^n}\)) : 2

C = \(\dfrac{3}{2^2}\) \(\times\) \(\dfrac{8}{3^2}\) \(\times\) \(\dfrac{15}{4^2}\) \(\times\) ...........\(\times\) \(\dfrac{899}{30^2}\)

C = \(\dfrac{1\times3}{2^2}\) \(\times\) \(\dfrac{2\times4}{3^2}\) \(\times\) \(\dfrac{3\times5}{4^2}\) \(\times\)........\(\times\) \(\dfrac{29\times31}{30^2}\)

C = \(\dfrac{1\times2\times\left(3\times4\times5\times....\times29\right)^2\times30\times31}{2^2\times\left(3\times4\times5\times.......\times29\right)^2\times30^2}\)

C =  \(\dfrac{2\times\left(3\times4\times5\times.....\times29\right)^2\times30}{2\times\left(3\times4\times5\times.....\times29\right)^2\times30}\) \(\times\) \(\dfrac{1\times31}{2\times30}\)

C = 1 \(\times\) \(\dfrac{31}{60}\)

C = \(\dfrac{31}{60}\)

38. Như Ý
Xem chi tiết