Phân tích đa thức \(x^2-5x+4\) dưới dạng \(x^2-5x+4=\left(x+1\right)^2+b\left(x+1\right)+c\) .
Vậy b+c=? (Hướng dẫn cách làm giùm mình nha)
Mn ơi hướng dẫn mình cái giải phương pháp hệ số bất định được không dạng phân tích đa thức thành nhân tử :
a) \(f\left(x\right)=x^3-9x^2+26x-24\)
b) \(g\left(x\right)=x^4-x^3-x^2+2x-2\)
Giai phần a cũng đc nhưng hướng dẫn kĩ cho vs
Phân tích đa thức x2-5x+4 dưới dạng: x2-5x+4=(x+1)2+b(x+1)+c. Khi đó b+c=.....??
Sai r pn...kquả là 3 nhưg mik k pit cách lm
Cho \(P\left(x\right)=ax^2-bx\) .Ta có: \(P\left(x+1\right)-P\left(x+2\right)=2x+3\) .
Khi đó: a=? ; b=? (Hướng dẫn cách làm giùm mình nha)
tham khảo cách lm tại câu hỏi tương tự nhé!!!
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ :
a) \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)
b) \(x^4+2015^2+2014x+2015\)
c) \(x^3+y^3+z^3-3xyz\)
d) \(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right) +4x^2\)
e) \(12x^3+16x^2-5x-3\)
PLEASE !!! GIÚP MK VS MK CẦN RẤT GẤP LÀM ƠN!!!
Nhiều quá cho đáp số thôi nhé
a/ \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1=\left(x^2-7x+11\right)^2\)
b/ \(x^4+2015x^2+2014x+2015=\left(x^2-x+2015\right)\left(x^2+x+1\right)\)
c/ \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
d/ \(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2=\left(x-1\right)^2\left(x^2-5x+1\right)\)
e/ \(12x^3+16x^2-5x-3=\left(2x-1\right)\left(2x+3\right)\left(3x+1\right)\)
Phân tích đa thức thành nhân tử :
a) \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)
b) \(x^4+2015^2+2014x+2015\)
c) \(x^3+y^3+z^3-3xyz\)
d) \(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)
a) \(A=\left(x-2\right)x-3\left(x-4\right)\left(x-5\right)+1=\left[\left(x-2\right)\left(x-5\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+1\)
\(A=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1=\left(y+1\right)\left(y-1\right)+1\)
\(A=y^2-1+1=y^2=\left(x^2-7x+11\right)^2\)
b) đề --> bản chất không sai--> không hợp lý--> sửa
c)
Không thuộc 7-HĐT:-> bạn chịu khó nội suy từ HĐT thứ 6: [A+B]^3--> với A=x ; ___B=(x+y)--> đáp số:\(x^3+y^3+z^3-3xzy=\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+xz+yz\right)\right]\)
hoặc:
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right]\)
Phân tích đa thức thành nhân tử:
a) \(x^4+3x^3+x^2+3x\)
b) \(x^4+x^2-27x-9\)
c) \(x^2-xy-x+y\)
d) \(xy+y-2\left(x+1\right)\)
e) \(5\left(x-y\right)+ax-ay\)
a: \(x^4+3x^3+x^2+3x\)
\(=x\left(x^3+3x^2+x+3\right)\)
\(=x\left(x+3\right)\left(x^2+1\right)\)
c: \(x^2-xy-x+y\)
\(=x\left(x-y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x-1\right)\)
Phân tích đa thức \(x^2-5x+4\)dưới dạng:
\(x^2-5x+4=\left(x+1\right)^2+b\left(x+1\right)+c\). Khi đó b + c = ...
Phân tích các đa thức sau thành nhân tử:
a)(4x-2)(10x+4)(5x+7)(2x+1)+17
b)\(x^4-x^3-10x^2+2x+4\)
c)\(2x^4-3x^3-7x^2+6x+8\)
d)\(x^4-6x^3+27x^2-54x+32\)
e)\(x^4+\left(x+y\right)^4+y^4\)
Các bạn làm được bài nào thì làm ko cần phải làm hết. Cảm ơn các bạn.
−9+34120x=−9−34120x=−9+2120x=−9−2120" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">⇔⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢x=−9+341−−−√20x=−9−341−−−√20x=−9+21−−√20x=−9−21−−√20
\(a,\)\(\left(4x-2\right)\left(10x+4\right)\left(5x+7\right)\left(2x+1\right)+17\)
\(=\left(4x-2\right)\left(5x+7\right)\left(10x+4\right)\left(2x+1\right)+17\)
\(=\left(20x^2+18x-5\right)\left(20x^2+18x+4\right)+17\)
Đặt ....
giải phương trình sau
a)\(\frac{x+1}{2}+\frac{x-2}{4}=1-\frac{2\left(x-1\right)}{3}\)
b)\(\frac{5x-1}{6}+x=\frac{6-x}{4}\)
c)\(\frac{5\left(1-2x\right)}{3}+\frac{x}{2}=\frac{3\left(x-5\right)}{4}-2\)
làm giúp mình với mình cần gấp cảm ơn các bạn nhiều
a, Ta có : \(\frac{x+1}{2}+\frac{x-2}{4}=1-\frac{2\left(x-1\right)}{3}\)
=> \(\frac{6\left(x+1\right)}{12}+\frac{3\left(x-2\right)}{12}=\frac{12}{12}-\frac{8\left(x-1\right)}{12}\)
=> \(6\left(x+1\right)+3\left(x-2\right)=12-8\left(x-1\right)\)
=> \(6x+6+3x-6=12-8x+8\)
=> \(17x=20\)
=> \(x=\frac{20}{17}\)
b, Ta có : \(\frac{5x-1}{6}+x=\frac{6-x}{4}\)
=> \(\frac{5x-1+6x}{6}=\frac{6-x}{4}\)
=> \(4\left(11x-1\right)=6\left(6-x\right)\)
=> \(44x-4-36+6x=0\)
=> \(\)\(50x=40\)
=> \(x=\frac{4}{5}\)
c, Ta có : \(\frac{5\left(1-2x\right)}{3}+\frac{x}{2}=\frac{3\left(x-5\right)}{4}-2\)
=> \(\frac{20\left(1-2x\right)}{12}+\frac{6x}{12}=\frac{9\left(x-5\right)}{12}-\frac{24}{12}\)
=> \(20\left(1-2x\right)+6x=9\left(x-5\right)-24\)
=> \(20-40x+6x-9x+45+24=0\)
=> \(43x=89\)
=> \(x=\frac{89}{43}\)