Chứng minh rằng:
\(\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho 24
\(c,31,8^2-2.31,8.21,8+21,8^2\)
Bài 12 : chứng minh rằng với mọi số nguyên n thì
a, \(\left(n+2\right)^2-\left(n-2\right)^2\) chia hết cho 8
b, \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)
Bài 20: Chứng minh với mọi số nguyên n thì
d) \(\left(n+7\right)^2-\left(n-5\right)^2\)chia hết cho 24
e) \(\left(7n+5\right)^2-25\)chia hết cho 7 với \(n\inℤ\)
f) \(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24 với \(n\inℤ\)
g) \(n^3-n\)chia hết cho 6 với mọi \(n\inℤ\)
d) ( n + 7 )2 - ( n - 5 )2
= n2 + 14n + 49 - n2 + 10n - 25
= 24n + 24
= 24 ( n + 1 ) chia hết cho 24 ( đpcm )
e)
( 7n + 5 )2 - 25
= ( 7n + 5 )2 - 52
= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )
= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )
f) ( n + 6 )2 - ( n - 6 )2
= ( n + 6 + n - 6 ) ( n + 6 - n + 6 )
= 2n . 12
= 24n chia hết cho 24 ( đpcm )
cho n là một số tự nhiên,chứng minh rằng \(A=n\times\left(n^2+6\right)\times\left(n^2+9\right)\) chia hết cho 5
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=\left(n+1\right)n\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
vì tích của 3 số tự nhiên liên tiếp chia hết cho 6
Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)
Chứng minh
\(n\left(n^2-1\right)\left(n^2+6\right)\) luôn chia hết cho 30 với mọi số nguyên n.
\(n\left(n^2-1\right)\left(n^2+6\right)\\=n\left(n-1\right)\left(n+1\right)\left(n^2-4+10\right) \\ =n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)\)
Vì n-2, n-1, n, n+1, n+2 là 5 số nguyên liến tiếp nên có ít nhất 1 số chia hết cho 2, 1 số chia hết 3, 1 số chia hết 5
Mà (2,3,5)=1\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2.3.5=30\)
Vì n-1, n, n+1 là 3 số nguyên liến tiếp nên có ít nhất 1 số chia hết 3
\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow10n\left(n-1\right)\left(n+1\right)⋮3.10=30\)
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)⋮30\)
Vậy ...
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi nguyên n.
Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1)
=> đpcm
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=>\left(n+1\right)\left(n^2+2n\right)\)
\(=>n\left(n+1\right)\left(n+2\right)\)
Ta thấy \(n;\left(n+1\right);\left(n+2\right)\)là 3 số tự nhiên liên tiếp
Mà tích của 3 số tn liên tiếp luôn chia hết cho 6
=> \(n^2\left(n+1\right)+2n\left(n+1\right)\)chia hết ch 6 ( đpcm )
Cấm ai chép ...............
Cho n nguyên dương. Chứng minh rằng :
\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2\right)\)chia hết cho 91
A=5^n^2+5^n-18n^2-6^n*2
= (5^n^2-18^n^2)+(5^n-12^n)
= -13^n^2-7^n
Mà -13^n^2-7^n chia hết cho 91 ( do chia hết cho 13 và 7)
=> A chia hết cho 91 ( đpcm)
k đúng cho mình nhé
chứng minh rằng
\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
chia hết cho 6 với mọi số nguyên
Phải sửa đề là chia hết cho 8 nha,mk có thử lại rồi: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n\left(n+4\right)-1\left(n+4\right)-n\left(n+1\right)+4\left(n+1\right)\)
\(=n^2+4n-n+4-n^2+n+4n+4\)
\(=\left(n^2-n^2\right)+\left(4n+4n\right)+\left(n-n\right)+\left(4+4\right)\)
\(=0+8n+0+8\)
\(=8n+8\)
\(=8\left(n+8\right)⋮8\rightarrowđpcm\)
Bài 1 : Chứng minh rằng với mọi số nguyên n
a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5
b)\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)chia hết cho 6
c)\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)chia hết cho 12
Bài 2:
Tìm x biết : \(\left(4x+3_{^{ }}\right)^3+\left(5-7x\right)^3+\left(3x-8\right)^3=0\)
Bài 2:Tìm x biết
\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)
\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)
\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)
\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)
\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)
Bài 2: Đặt \(4x+3=a;5-7x=b;3x-8=c\Rightarrow a+b+c=0\)
Kết hợp với đề bài ta có \(\left\{{}\begin{matrix}a^3+b^3+c^3=0\\a+b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3+c^3-3abc+3abc=0\\a+b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=0\left(1\right)\\a+b+c=0\left(2\right)\end{matrix}\right.\)
Thay (2) vào (1) suy ra \(3abc=0\Leftrightarrow a=0\text{hoặc }b=0\text{hoặc }c=0\)
+) a = 0 suy ra \(x=-\frac{3}{4}\)
+) b = 0 suy ra \(x=\frac{5}{7}\)
+) c = 0 suy ra \(x=\frac{8}{3}\)
Vậy...