Cho tam giác nhọn ABC, các đường cao BD,CE cắt nhau ở H. Chứng minh rằng :
a, Tam giác EHB đồng dạng tam giác DHC
b,Tam giác HED đồng dạng tam giác HBC
c, Tam giác ADE đồng dạng tam giác ABC
d, BD.BH+CH.CE=BC ^2
Cho tam giác nhọn ABC, các đường cao BD và CE cắt nhau ở H. Chứng minh rằng:
a) Tam giác EHB đồng dạng tam giác DHC
b) Tam giác HED đồng dạng tam giác HBC
c) Tam giác ADE đồng dạng tam giác ABC
cho tam giác ABC, các đường cao BD và CE cắt nhau tại H. chúng minh rằng:
a) tam giác EHB đồng dạng tam giác DHC
b)tam giác HED đồng dạng tam giác HBC
c) tam giác ADE đồngb dạng tam giác ABC
a)
Xét tam giác EHB và tam giác DHC có :
\(\widehat{EHB}=\widehat{DHC}\left(đđ\right)\)
\(\widehat{HEB}=\widehat{HDC}\)
\(\Rightarrow\) tam giác EHB đồng dạng với tam giác DHC (g-g)
b)
Do tam giác EHB đồng dạng với tam giác DHC
\(\Rightarrow\frac{EH}{DH}=\frac{HB}{HC}\)
Xét tam giác HED và tam giác HBC có :
\(\frac{EH}{DH}=\frac{HB}{HC}\)
\(\widehat{EHD}=\widehat{BHC}\)
\(\Rightarrow\) tam giác HED đồng dạng với tam giác HBC (c-g-c)
cho tam giác ABC nhọn , các đường cao BD và CE cắt nhau ở H. Chứng minh rằng:
a) tam giác ADB đồng dạng với tam giác AEC
b) HB.HD=HC.HE
c)tam giác HBC đòng dạng với tam giác HED
d) tam giác vuông ADE= tam giác vuông ABC
a) Xét \(\Delta ADB\) và \(\Delta AEC\) co:
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(\widehat{A}\) CHUNG
Suy ra: \(\Delta ADB~\Delta AEC\)
b) Xét \(\Delta EHB\) và \(\Delta DHC\) có:
\(\widehat{HEB}=\widehat{HDC}=90^0\)
\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
suy ra: \(\Delta EHB~\Delta DHC\)
\(\Rightarrow\)\(\frac{EH}{DH}=\frac{HB}{HC}\)
\(\Rightarrow\)\(HB.DH=HC.HE\)
cho tam giác ABC nhọn, các đường cao BD, CE cắt nhau tại H. Cm:
a) tam giác DAB đồng dạng tam giác EAC
b) tam giác HBE đồng dạng tam giác HCD
c) tam giác HBC đồng dạng tam giác HED
d) AB.AE=AC.AD
e) BH.BD+CH.CE=BC^2
bạn tự làm câu a,b,c nhá.
d,Xét tam giác ABD và tam giác ACE có:
Chung góc A
góc ADB=góc AEC(=90 độ)
suy ra tam giác ABC đồng dạng tam giác ACE(g.g)
suy ra
AB/AC=AD/AE(đ/n 2 tam giác đồng dạng)
suy ra AB.AE=AC.AD(dieu phai cm)
e.Kẻ AH vuông góc với BC tại I
Xét BIH và BCD có:(mk viết tắt Tam giác nha)
Chung góc B
góc I=góc D(=90 độ)
suy ra BHI đồng dạng BCD(g.g)
suy ra HB/BC=BI/BD(đ/n 2 tam giác đồng dạng)
suy ra BH.BD=BC.BI (1)
tương tự xét CHI đồng dạng CBE(chung goc C;goc I=gocE=90 độ)
suy ra CH.CE=BC.IC (2)
từ (1) và (2) suy raBH.BD+CH.CE=BC.BI+BC.IC
=BC.(BI+IC)
=BC.BC
=BC2
Vậy BH.BD+CH.CE=BC2.
Cho tam giác ABC nhọn, BD và CE là hai đường cao cắt nhau tại H.
a) Chứng minh tam giác HED đồng dạng với tam giác HBC
b) Chứng minh tam giác ADE đồng dạng với tam giác ABC
c) Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, cắt AB tại I, cắt AC tại K. Chứng minh tam giác IMK là tam giác cân.
Giúp mik câu c ạ ! Cảm ơn mọi người
Cho tam giác nhọn ABC 2 đường cao BD, CE. CMR:
a, Tam giác ADB đồng dạng với tam giác AEC
b, Tam giác AED đồng dạng với tam giác ACB
c, Tam giác DHC đồng dạng với tam giác EHB (H là trực tâm của tam giác)
d, BH . BD + CH . CE = BC^2
a , b, c mink lam đung do nhớ k cho mink nha
Mink chứng mink từng câu nha nhưng phần dễ sẽ làm hơi tắt nên bn đọc kĩ nha
a, Xét tam giác ADB và tam giác AEC có
Góc ADB = Góc AEC ( = 90 )
Góc BAC chung
Suy ra tam giác ADB đồng dạng với tam giác AEC ( g.g )
b ,
Có tam giác ADB đồng dạng với tam giác AEC ( c.m.t )
AD/AE = AB/AC ( định nghĩa 2 tam giác đồng dạng )
hay AD/AB = AE/AC
Xét tam giác AED và tam giác ACB có
BAC chung
AD/AB = AE/AC ( c.m.t)
Suy ra tam giác AED đồng dạng với tam giác ACB ( g.g )
c,
Có tam gác ADB đồng dạng với tam giác AEC ( câu a )
Suy ra góc ABD = góc ACE ( 2 góc tương ứng )
Xét tam giác DHC và tam giác EHB ta có
Góc ABD = góc ACE ( c.m.t)
Góc DHC = góc EHB ( 2 góc đối đỉnh )
Suy ra tam giác DHC đồng dạng với tam giác EHB ( g.g )
Bài 4. (1,5 điểm)
Cho tam giác nhọn ABC
BD và CE là hai đường cao cắt nhau tại H.
a) Chứng minh rằng:
tam giác HED đồng dạng HBC
b) Chứng minh rằng:
tam giác ADE đồng dạng ABC
c) Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, cắt AB tại
I, cắt AC tại K. Chứng minh tam giác IMK là tam giác cân
giúp mik vs mn ơi
đây là đáp án bạn nhé
ảnh kia của mình nó bị thiếu nhé
Cho tam giác ABC nhọn, các đường cao BD và CE cắt nhau ở H. Chứng minh rằng:
a) ΔEHB đồng dạng ΔDHC
b) ΔHED đồng dạng ΔHBC
c) ΔADE đồng dạng ΔABC
d) BD.BH+CH.CE=BC²
a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB∼ΔDHC(góc nhọn)
b) Ta có: ΔEHB∼ΔDHC(cmt)
\(\Leftrightarrow\frac{HE}{HD}=\frac{HB}{HC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(\frac{HE}{HB}=\frac{HD}{HC}\)
Xét ΔHED và ΔHBC có
\(\frac{HE}{HB}=\frac{HD}{HC}\)(cmt)
\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔHED∼ΔHBC(c-g-c)
c) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
\(\Leftrightarrow\frac{AD}{AE}=\frac{AB}{AC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(\frac{AD}{AB}=\frac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\frac{AD}{AB}=\frac{AE}{AC}\)(cmt)
\(\widehat{DAE}\) chung
Do đó: ΔADE∼ΔABC(c-g-c)
d) Gọi K là giao điểm của AH và BC
Xét ΔABC có
BD là đường cao ứng với cạnh AC(gt)
CE là đường cao ứng với cạnh AB(gt)
BD\(\cap\)CE={H}
Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
⇔AH⊥BC
⇔AK⊥BC(AH\(\cap\)BC={K})
Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
\(\widehat{DBC}\) chung
Do đó: ΔBKH∼ΔBDC(góc nhọn)
\(\Leftrightarrow\frac{BK}{BD}=\frac{BH}{BC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(BK\cdot BC=BH\cdot BD\)
Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
\(\widehat{ECB}\) chung
Do đó: ΔCKH∼ΔCEB(g-g)
\(\Leftrightarrow\frac{CK}{CE}=\frac{CH}{CB}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(CK\cdot CB=CE\cdot CH\)
Ta có: \(BD\cdot BH+CE\cdot CH=BK\cdot BC+CK\cdot BC\)
\(=BC\cdot\left(BK+CK\right)=BC\cdot BC=BC^2\)(đpcm)
Hình tự vẽ nha:))
a) Xét ΔEHB và ΔDHC có:
∠BEH=∠CDH=90o
∠EHB=∠DHC(đối đỉnh)
Do đó, ΔEHB∼ΔDHC (gg).
b) Xét ΔHED và HBC có:
\(\frac{HE}{HB}=\frac{HD}{HC}\)(ΔEHB∼ΔDHC)
∠DHE=∠BHC (đđ)
Do đó,ΔHED∼ΔHBC(cgc)
c) Xét ΔADB và ΔAEC có:
∠A chung
∠ADB=∠AEC=90o
Do đó, ΔADB∼ΔAEC(gg)
Xét ΔAED và ΔABC có:
∠A chung
\(\frac{AD}{AB}=\frac{AE}{AC}\)(ΔADB∼ΔAEC)
Do đó, ΔAED∼ΔABC(cgc)
d) Vẽ HK⊥BC(K∈BC)
ΔBHK∼ΔBDC(gg)⇒\(\frac{BK}{BD}=\frac{BH}{BC}\)⇔BK.BC=BH.BD
ΔCHK∼ΔCBE(gg)⇒\(\frac{CK}{CE}=\frac{CH}{CB}\)⇔CK.BC=CE.CH
⇒BC(BK+CK)=BH.BD+CE.CH
⇔BC2=BH.BD+CE.CH (đpcm)
cho tam giác ABC nhọn, các đường cao BD, CE cắt nhau tại H. Cm a tam giác DAB đồng dạng tam giác EACb tam giác HBE đồng dạng tam giác HCDc tam giác HBC đồng dạng tam giác HEDd AB.AE AC.ADe BH.BD CH.CE BC 2