Tìm \(x\in Z\) biết:
\(83\le\left|5x-1\right|\le113\)
tìm x biết \(\dfrac{-1}{8}< \dfrac{x}{72}\le\dfrac{-1}{36}\left(vớix\in z\right)\)
\(-\dfrac{1}{8}< \dfrac{x}{72}\le-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{-9}{72}< \dfrac{x}{72}\le-\dfrac{2}{72}\)
\(\Rightarrow x\in\left\{-8;-7;-6;-5;-4;-3;-2\right\}\)
`(-1)/8 < x/72 <= (-1)/36`
`(-1xx9)/(8xx9) < x/72 <= (-1xx2)/(36xx2)`
`(-9)/72 < x/72 <= (-2)/72`
`-> -9< x <= (-2)`
`-> x=-8;-7;-6;-5;-4;-3;-2`
`@ yngoc`
Tìm x ϵ Z biết:
a) | 2x – 5 | = 13
b) \(\left|7x+3\right|\) = 66
c) | 5x – 2| \(\le\) 0
a) I 2x-5 I = 13
=> 2x-5 =13 => x=9
hoặc 2x-5= -13 => x=\(\dfrac{-8}{2}\)
a) | 2x-5 | = 13
=>2x-5 = 13 hoặc 2x-5 = -13
+)2x-5 = 13
=>2x = 13+5 =18
+)2x-5 =-13
=>2x=-13+5 = -8
=>x=-4
Vậy x thuộc {9;-4}
Vậy x=9
b)|7x+3|=66
=>7x+3 = 66 hoặc 7x+3 = -66
+)7x+3=66
=>7x=66-3=63
=>x=9
+)7x+3=-66
=>7x=-66-3=-69
=>x=-69/7 (loại vì x thuộc Z )
Vậy x=9
c) Có | 5x-2|\(\le\)0
mà |5x-2|\(\ge\)0
=>|5x-2|=0
=>5x-2=0
=>5x=2
=>x=2/5 ( loại vì x thuộc Z)
Vậy x=\(\varnothing\)
Giải:
a) \(\left|2x-5\right|=13\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=13\\2x-5=-13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=9\left(t\backslash m\right)\\x=-4\left(t\backslash m\right)\end{matrix}\right.\)
b) \(\left|7x+3\right|=66\)
\(\Rightarrow\left[{}\begin{matrix}7x+3=66\\7x+3=-66\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{-69}{7}\end{matrix}\right.\)
Vì \(x\in Z\) nên x=9
c) \(\left|5x-2\right|\le0\)
mà \(\left|5x-2\right|\ge0\)
\(\Rightarrow\left|5x-2\right|=0\)
\(5x-2=0\)
\(5x=0+2\)
\(5x=2\)
\(x=2:5\)
\(x=\dfrac{2}{5}\) (loại)
Vậy \(x\in\) ∅
Tìm \(x\in Z\) biết:
\(\left|5x-2\right|\le0\)
\(\left|5x-2\right|\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-2\le0\\5x-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{2}{5}\\x\ge-\dfrac{2}{5}\end{matrix}\right.\)
\(\text{Vì: }\)\(x\in Z\)
\(S=\left\{0\right\}\)
Vì \(\left|5x-2\right|\ge0\), kết hợp với đề bài
\(\Rightarrow\left|5x-2\right|=0\) \(\Leftrightarrow5x-2=0\) \(\Leftrightarrow x=\dfrac{2}{5}\) (Loại)
Vậy bất phương trình vô nghiệm
Bài 17: Tìm x \(\in\)Z biết:
\(\frac{2}{3}\times\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\le\frac{x}{18}\le\frac{7}{3}\times\left(\frac{1}{2}-\frac{1}{6}\right)\)
\(\frac{2}{3}\) .\(\frac{3}{4}\)\(\le\)\(\frac{x}{18}\) \(\le\)\(\frac{7}{3}\).\(\frac{1}{3}\)
\(\frac{1}{2}\le\frac{x}{18}\le\frac{7}{9}\)
\(\frac{9}{18}\le\frac{x}{18}\le\frac{14}{18}\)
\(\Rightarrow x\in\){9:10;11;12;13;14}
\(\frac{2}{3}.\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\le\frac{x}{18}\le\frac{7}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\)
\(\frac{2}{3}.\left(\frac{5}{4}-\frac{1}{3}\right)\le\frac{x}{18}\le\frac{7}{3}.\frac{1}{3}\)
\(\frac{2}{3}.\frac{11}{12}\le\frac{x}{18}\le\frac{7}{9}\)
\(\frac{11}{18}\le\frac{x}{18}\le\frac{7}{9}\)
\(\frac{11}{18}\le\frac{x}{18}\le\frac{14}{18}\)
Vậy \(x\in\left\{11;12;13\right\}\)
\(\frac{2}{3}\cdot\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\le\frac{x}{18}\le\frac{7}{3}\cdot\left(\frac{1}{2}-\frac{1}{6}\right)\)
\(\frac{2}{3}\cdot\left(\frac{2}{4}+\frac{3}{4}-\frac{1}{3}\right)\le\frac{x}{18}\le\frac{7}{3}\cdot\left(\frac{3}{6}-\frac{1}{6}\right)\)
\(\frac{2}{3}\cdot\left(\frac{5}{4}-\frac{1}{3}\right)\le\frac{x}{18}\le\frac{7}{3}\cdot\frac{1}{3}\)
\(\frac{2}{3}\cdot\left(\frac{15}{12}-\frac{4}{12}\right)\le\frac{x}{18}\le\frac{7}{9}\)
\(\frac{2}{3}\cdot\frac{11}{12}\le\frac{x}{18}\le\frac{7}{9}\)
\(\frac{11}{18}\le\frac{x}{18}\le\frac{14}{18}\)
Để \(x\)phải nhỏ hơn hoặc bằng thì x lần lượt bằng \(\left\{11;12;13;14\right\}\)
Tìm x \(\in\)Z biết :
\(7\frac{1}{3}\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{3}{4}\left(\frac{1}{6}-\frac{1}{5}-\frac{1}{15}\right)\)
cho tập \(Â=\left\{x\in R|2x-1< 5\right\},B=\left\{x\in Z|-1\le x\le5\right\}\)
và C là tập giá trị hàm: y=x^2-2x+m trên \([-1;1)\)
a, tìm \(A\cap B\)
b, tìm m để \(C\subset A\)
\(a,\)\(A=\left\{x\in R|x< 3\right\}\Rightarrow A=\left(\text{ -∞;3}\right)\)
\(B=\left\{-1;0;1;2;3;4;5\right\}\)
\(\Rightarrow A\cap B=\left\{-1;0;1;2\right\}\)
\(b,x=-1\Rightarrow y=1-2\left(-1\right)+m=m+3\)
\(x=1\Rightarrow y=1-2+m=m-1\)
\(\Rightarrow C=(m-1;m+3]\subset A\)
\(\Rightarrow C\subset A\Leftrightarrow m+3< 3\Leftrightarrow m< 0\)
tìm x \(\in\)z
\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le\frac{-2}{3}\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
Tìm \(x\in Z\) biết :
a) \(\left|x\right|\le8\)
b) \(11\le\left|x\right|\le15\)
Help me !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a)
\(\left|x\right|\le8\)
\(\Rightarrow\left|x\right|\in\left\{1;2;3;4;5;6;7;8\right\}\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6;7;8;-1;-2;-3;-4;-5;-6;-7;-8\right\}\)
b)
\(11\le\left|x\right|\le15\)
\(\Rightarrow\left|x\right|\in\left\{11;12;13;14;15\right\}\)
\(\Rightarrow x\in\left\{11;12;13;14;15;-11;-12;-13;-14;-15\right\}\)
Silver bullet
soyeon_Tiểubàng giải
Phương An
Nguyễn Huy Tú
Hoàng Lê Bảo Ngọc
Nguyễn Huy Thắng
Tìm x, biết:
a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)
b) \(\left[\left(-0,5\right)^3\right]^x=\dfrac{1}{64}\)
c) \(2020^{\left(x-2\right).\left(2x+3\right)}=1\)
d) \(\left(x+1\right)^{x+10}=\left(x+1\right)^{x+4}\) với \(x\in Z\)
e) \(\dfrac{3}{4}\sqrt{x}-\dfrac{1}{2}=\dfrac{1}{3}\)
\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)