Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Thư
Xem chi tiết
 Mashiro Shiina
27 tháng 6 2017 lúc 9:12

Ta có: Trường hợp 1:

a<b

\(a< b\Leftrightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)

Trường hợp 2:

a>b

\(a>b\Leftrightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+m}{b+m}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\)

Đạt Trần
27 tháng 6 2017 lúc 9:23

Ta có:

\(\dfrac{a}{b}=\dfrac{a.\left(b+2017\right)}{b.\left(b+2017\right)}=\dfrac{a.b+a.2017}{b\left(b+2017\right)}\left(1\right)\)

\(\dfrac{a+2017}{b+2017}=\dfrac{b.\left(a+2017\right)}{b.\left(b+2017\right)}=\dfrac{a.b+b.2017}{b.\left(b+2017\right)}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\) + Nếu a>b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}>\dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)

+ Nếu a<b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}< \dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)

+ Nếu a=b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}=\dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}\)

Lê Gia Bảo
27 tháng 6 2017 lúc 9:25

Qui đồng mẫu số:

\(\dfrac{a}{b}=\dfrac{a\left(b+2017\right)}{b\left(b+2017\right)}=\dfrac{ab+2017a}{b\left(b+2017\right)}\)

\(\dfrac{a+2017}{b+2017}=\dfrac{b\left(a+2017\right)}{b\left(b+2017\right)}=\dfrac{ab+2017b}{b\left(b+2017\right)}\)

Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.

Ta so sánh: ab + 2017a với ab + 2017

\(-\)Nếu a < b \(\Rightarrow\) tử số phân số thứ nhất < tử số phân số thứ hai

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)

\(-\)Nếu a = b \(\Rightarrow\) hai phân số bằng nhau = 1

\(-\)Nếu a > b \(\Rightarrow\) tử số phân số thứ nhất > tử số phân số thứ hai

\(\Rightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)

Chúc bạn học tốt!!!!

Nguyễn Nguyên Trung
Xem chi tiết
NTH
20 tháng 9 2017 lúc 20:56

nguyễn trung ruồi

minhduc
20 tháng 9 2017 lúc 20:59

a+2017/b+2017=a+2017-2017/b+2017-2017=a/b

=> a/b=a+2017/b+2017

Yến Vy
Xem chi tiết
Phương An
14 tháng 7 2017 lúc 16:12

Bài 2:

a)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

=> a = b = c

b)

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)

=> x = y = z (theo a)

Thay x = y = z vào biểu thức, ta có:

\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)

c)

\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)

Thay a = b = c vào biểu thức, ta có:

\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)

Đức Minh
14 tháng 7 2017 lúc 16:26

Bài 1 chưa nhìn kĩ lắm nhưng thấy câu c tự dưng thọt vào cái chứng minh ngay hai cái đó bằng nhau luôn à ? c và d thỏa mãn điều kiện gì ?

Chắc câu a b cũng thiếu đk nốt nhìn nhói tim quá :v

Giòn Giang
Xem chi tiết
Mai Thanh Tâm
Xem chi tiết
TheRedSuns
19 tháng 6 2017 lúc 13:14

Cậu quy đồng lên r so sánh

Còn mún làm thì phải thay số của bài này

Link:

Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath

TNT học giỏi
19 tháng 6 2017 lúc 13:20

kết quả nó là :

  => \(\frac{a}{b}\)\(\frac{a+2001}{b+2001}\)

     còn cách làm thì vào trang Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath

Mai Thanh Tâm
19 tháng 6 2017 lúc 13:26

giải luôn đi

Nguyễn Ngọc Tuệ Mẫn
Xem chi tiết
Trương Minh Trọng
24 tháng 6 2017 lúc 14:30

\(\frac{a}{b}>\frac{a+2017}{b+2017}\)

Hãy Like Cho Bexiu
21 tháng 8 2017 lúc 12:14

AI

K

CHO

MINH

VOI

CAM

ON

Hãy Like cho Bexiu
21 tháng 8 2017 lúc 12:18

AI

K

CHO

MINH

VOI

CAM

ON

Kim Taeyeon
Xem chi tiết
Trần Ngọc Hạnh Nguyên
Xem chi tiết
Akai Haruma
19 tháng 11 2017 lúc 21:36

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow \left\{\begin{matrix} a=b\\ b=c\\ c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Khi đó: \(\frac{a^{2017}+b^{2017}}{c^{2017}}=\frac{a^{2017}+a^{2017}}{a^{2017}}=2\)

Khánh ly
Xem chi tiết
Nguyễn Tiến Hiệp
15 tháng 8 2016 lúc 21:51

ta có a+2017/b+2018 < a+2018/b+2018

so sánh a/b và a+2018/b+2018 ta có

1-a/b=b-a/b

1-a+2018/b+2018=b-a/b+2018 =>a/b>a+2018/b+2018>a+2017/b+2018