Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
DUONG THUY
Xem chi tiết
GDucky
Xem chi tiết
Akai Haruma
15 tháng 5 2021 lúc 14:10

Lời giải:

$x^6-x^4+x^2+m=x^4(x^2-1)+(x^2-1)+m+1$

$=(x^2-1)(x^4+1)+m+1$. Như vậy, đa thức này chia cho $x^2-1$ dư $m+1$

Vì $x^6-x^4+x^2+m$ chia hết cho $x^2-1$ nên $m+1=0$

$\Leftrightarrow m=-1$

Đáp án B.

Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 12 2020 lúc 23:28

Do \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e\) có 4 nghiệm pb \(x_1;x_2;x_3;x_4\)

\(\Rightarrow f\left(x\right)=a\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)

Ta có:

\(f'\left(x\right)=a\left[\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)+\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)+\left(x-x_1\right)\left(x-x_3\right)\left(x-x_4\right)+\left(x-x_1\right)\left(x-x_2\right)\left(x-x_4\right)\right]\)

\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_1\right)=a\left(x_1-x_2\right)\left(x_1-x_3\right)\left(x_1-x_4\right)\\f'\left(x_2\right)=a\left(x_2-x_1\right)\left(x_2-x_3\right)\left(x_2-x_4\right)\\f'\left(x_3\right)=a\left(x_3-x_1\right)\left(x_3-x_2\right)\left(x_3-x_4\right)\\f'\left(x_4\right)=a\left(x_4-x_1\right)\left(x_4-x_2\right)\left(x_4-x_3\right)\end{matrix}\right.\)

Mà tiếp tuyến tại A và B vuông góc \(\Leftrightarrow f'\left(x_1\right).f'\left(x_2\right)=-1\) (1)

Do \(x_1;x_2;x_3;x_4\) lập thành 1 CSC, giả sử công sai của CSC là \(d\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=x_1+d\\x_3=x_1+2d\\x_4=x_1+3d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_1\right)=a.\left(-d\right).\left(-2d\right).\left(-3d\right)=-6ad^3\\f'\left(x_2\right)=a.d.\left(-d\right).\left(-2d\right)=2ad^3\\f'\left(x_3\right)=a.2d.d.\left(-d\right)=-2ad^3\\f'\left(x_4\right)=a.3d.2d.d=6ad^3\end{matrix}\right.\)

Thế vào (1): \(-12a^2d^6=-1\Leftrightarrow12a^2d^6=1\)

\(\Rightarrow f'\left(x_3\right)+f'\left(x_4\right)=4ad^3\)

\(\Rightarrow S=\left(4ad^3\right)^{2020}=\left(16a^2d^6\right)^{1010}=\left(\dfrac{4}{3}.12a^2d^6\right)^{1010}=\left(\dfrac{4}{3}\right)^{1010}\)

Bài gì mà dễ sợ :(

Minh Nguyệt
14 tháng 12 2020 lúc 23:43

undefined

Nguyễn Việt Lâm
15 tháng 12 2020 lúc 0:06

Đầu tiên xác định cụ thể pt (P) ra:

(P) qua điểm \(\left(0;-3\right)\Rightarrow c=-3\)

Từ độ độ đỉnh: \(\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\\dfrac{4ac-b^2}{4a}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\-12a-16a^2=4a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=4\end{matrix}\right.\)

\(\Rightarrow y=-x^2+4x-3\)

\(\Rightarrow y'=-2x+4\)

Gọi giao điểm của \(d_1;d_2\) là A và giao điểm của \(d_1;d_2\) với Ox lần lượt là B và C \(\Rightarrow\Delta ABC\) vuông cân tại A (\(y'=-2x+4\) nên (P) không thể tồn tại 1 tiếp tuyến vuông góc trục hoành dạng \(x=k\) do đó 2 tiếp tuyến ko bao giờ vuông góc với Ox)

\(\Rightarrow AB\) tạo với trục hoành 1 góc 45 độ

\(\Rightarrow\) Hệ số góc của đường thẳng \(d_1\) là \(k=tan45^0=1\)

\(\Rightarrow y'=-2x+4=1\Rightarrow x=\dfrac{3}{2}\)

\(\Rightarrow y=\dfrac{3}{4}\)

Phương trình \(d_1\)\(y=1\left(x-\dfrac{3}{2}\right)+\dfrac{3}{4}\Leftrightarrow y=x-\dfrac{3}{4}\)

Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2022 lúc 14:24

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

Gin Thuý Hiền
Xem chi tiết
Nguyễn Hoàng Phúc
Xem chi tiết
Nguyễn Hữu Trường Hải
13 tháng 5 2020 lúc 19:22

123456

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 12 2019 lúc 11:50

Chọn đáp án A

.

.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 8 2019 lúc 15:01

Chọn A

Ruby
Xem chi tiết
Muốn Một Cái Tên Dài Như...
12 tháng 3 2019 lúc 21:22

f(0) ⋮ 7 => e ⋮ 7

=> g(x) = ax4 + bx3 + cx2 + dx ⋮ 7 ∀ x nguyên

g(1) = a + b + c + d ⋮ 7

g(-1) = a - b + c - d ⋮ 7

=> \(\left\{{}\begin{matrix}\left(a+b+c+d\right)+\left(a-b+c-d\right)⋮7\\\left(a+b+c+d\right)-\left(a-b+c-d\right)⋮7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2\left(a+c\right)⋮7\\2\left(b+d\right)⋮7\end{matrix}\right.\)

Mà 2 không chia hết cho 7 => \(\left\{{}\begin{matrix}a+c⋮7\\b+d⋮7\end{matrix}\right.\) (1)

g(2) = 16a + 8b + 4c + 2d ⋮ 7

g(-2) = 16a - 8b + 4c - 2d ⋮ 7

=> \(\left\{{}\begin{matrix}\left(16a+8b+4c+2d\right)+\left(16a-8b+4c-2d\right)⋮7\\\left(16a+8b+4c+2d\right)-\left(16a-8b+4c-2d\right)⋮7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}8\left(4a+c\right)⋮7\\4\left(4b+d\right)⋮7\end{matrix}\right.\)

Mà 8 và 4 không chia hết cho 7

=> \(\left\{{}\begin{matrix}4a+c⋮7\\4b+d⋮7\end{matrix}\right.\) (2)

Từ (1) và (2)

=> \(\left\{{}\begin{matrix}\left(4a+c\right)-\left(a+c\right)⋮7\\\left(4b+d\right)-\left(b+d\right)⋮7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3a⋮7\\3b⋮7\end{matrix}\right.\)

Mà 3 không chia hết cho 7 => \(\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\)

Lại có: \(\left\{{}\begin{matrix}a+c⋮7\\b+d⋮7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}c⋮7\\d⋮7\end{matrix}\right.\)

Vậy bài toán đã được chứng minh