Giải phương trình
\(\sqrt{1-x}+\sqrt{4+x}=3\)
các bn giúp mink với mink cần gấp
giải phương trình
\(\sqrt{1-x}+\sqrt{4+x}=3\)3
các bn giúp mink với mink cần gấp
Đk:\(-4\le x\le1.\)
Đặt \(\sqrt{1-x}=a,\sqrt{4+x}=b.\)
\(\Rightarrow\hept{\begin{cases}a+b=3\\a^2+b^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2=9\\a^2+b^2=5\end{cases}\Rightarrow}ab=2\Rightarrow\left(a-b\right)^2=1.\Rightarrow\orbr{\begin{cases}a-b=1\\a-b=-1\end{cases}\Rightarrow}\orbr{\begin{cases}a=2,b=1\\a=1,b=2\end{cases}}.}\)
Từ đó suy ra x=-3,x=0
Bài 1: Giải phương trình \(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
(mink đang cần gấp)
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow x-\sqrt{x^2-1}+x+\sqrt{x^2-1}+2\sqrt{x^2-\left(x^2-1\right)}=4\)
\(\Leftrightarrow2x+2=4\)
\(\Leftrightarrow x=1\)
cho phương trình \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
giải bằng phương pháp nhân một lượng liên hợp nhá
giải xong mink tích
Bạn tự xét ĐKXĐ nhé ^^
Ta có : \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
\(\Leftrightarrow\left(\sqrt{3x^2-5x+1}-\sqrt{3}\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)-\left[\sqrt{3\left(x^2-x-1\right)}-\sqrt{3}\right]+\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)=0\)
\(\Leftrightarrow\frac{3x^2-5x+1-3}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x^2-3x-3-3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x-2\right)\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{\left(x-2\right)\left(x-1\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x+3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)Tới đây bạn tự làm tiếp ^^
Dài quá ^^
các bn ơi giúp mink bài 4 với mink đang cần gấp lắm ( nếu bn nào lm dc câu e bài 3 thì giúp mink luôn nha mink cảm ơn nhìu lắm :))
Bài 4:
a: Ta có: \(-\left|x+1.1\right|\le0\forall x\)
\(\Leftrightarrow-\left|x+1.1\right|+1.5\le1.5\forall x\)
Dấu '=' xảy ra khi x=-1,1
b: Ta có: \(-4\left|x-2\right|\le0\forall x\)
\(\Leftrightarrow-4\left|x-2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x=2
Tìm x
( x+1 ) + ( x+2 ) + ( x+3 ) + ...........( x+9 ) + ( x+10 ) = 240
các bn giúp mink nha mink dag cần gấp
các bn giúp mink nha
Trả lời:
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+9\right)+\left(x+10\right)=240\)
\(\Leftrightarrow\left(x+x+x+...+x+x\right)+\left(1+2+3+...+9+10\right)=240\)
\(\Leftrightarrow10x+\left(10+1\right)\times\left[\left(10-1\right)\div1+1\right]\div2=240\)
\(\Leftrightarrow10x+11\times10\div2=240\)
\(\Leftrightarrow10x+55=240\)
\(\Leftrightarrow10x=185\)
\(\Leftrightarrow x=18,5\)
Vậy \(x=18,5\)
( x+1 )+( x+2 )+...+( x+10 ) = 240
= x+1 + x+2 + x+3 +...+ x+9 + x+10 = 240
= ( x+x+x+...+x ) + ( 1+2+3+...+9+10 ) = 240
= 10.x + 55 = 240
10.x = 240-55
10.x = 185
x = 185 : 10
x = 18,5
mn giải giúp mink với mink cần rất gấp
(-4) x y -5=23-32
mn x là nhân nha,mn giúp mink với nhá.Thank you mn thân thương
Cho biểu thức A=\(\dfrac{\sqrt{x}+1}{x+4\sqrt{x}+4}:\left(\dfrac{x}{x+2\sqrt{x}}+\dfrac{x}{\sqrt{x}+2}\right)\)( x ≥ 0)
a) Rút gọn
b) Tìm x để A ≥ \(\dfrac{1}{3\sqrt{x}}\)
(mink đag cần gấp)
a, A= \(\frac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\frac{\left(\sqrt{x}\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{x}{\sqrt{x}+2}\right)\)
A=\(\frac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)}+\frac{x}{\sqrt{x}+2}\right)\)
A=\(\frac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\frac{\sqrt{x}+x}{\left(\sqrt{x}+2\right)}\right)\)
A=\(\frac{1}{x+2\sqrt{x}}\)
b, A >= \(\frac{1}{3\sqrt{x}}\)
=> \(\frac{1}{x+2\sqrt{x}}\) >= \(\frac{1}{3\sqrt{x}}\)
=> x <= -1 , x >= 4 (x khác 0)
Cho biểu thức A=\(\dfrac{\sqrt{x}+1}{x+4\sqrt{x}+4}:\left(\dfrac{x}{x+2\sqrt{x}}+\dfrac{x}{\sqrt{x}+2}\right)\)( x ≥ 0)
a) Rút gọn
b) Tìm x để A ≥ \(\dfrac{1}{3\sqrt{x}}\)
(mink đag cần gấp)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\end{matrix}\right.\)
Mình đang cần gấp lắm, các bạn giúp mình với. Cảm ơn!
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).
ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).
Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)
Do đó x > 0 nên y > 0.
Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).
Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).
Dấu "=" xảy ra khi và chỉ khi a = b.
Áp dụng bất đẳng thức trên ta có:
\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)
\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)
Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4)
Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).
Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)
Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).
Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.
Thay x = y vào (2) ta được:
\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))
PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v