Phân tích thành nhân tử:
a. x^4+2x^3+x^2
b.x^3-x+3x^2y+3xy^2+y^3-y
c. 5x^2-10xy+5y^2-20z^2
Phân tích thành nhân tử
\(x^4 +2x^3 +x^2\)
\(x^3 -x+3x^2 y+3xy^2 +y^3 -y\)
\(5x^2 -10xy+5y^2 -20z^2\)
a: =x^2(x^2+2x+1)
=x^2(x+1)^2
b: =x^3+3x^2y+3xy^2+y^3-x-y
=(x+y)^3-(x+y)
=(x+y)[(x+y)^2-1]
=(x+y)(x+y-1)(x+y+1)
c: =5(x^2-2xy+y^2-4z^2)
=5(x-y-2z)(x-y+2z)
Phân tích đa thức thành nhân tử :
x^4 + 2x^3 + x^2
5x^2 - 10xy 5y^2 - 20z^2
x^3 - x + 3x^2y + 3xy^2 + y^3 - y
Nhanh nha !
a) x4 + 2x3 + x2
= x2 ( x2 + 2x + 1 )
= x2 ( x + 1 )2
b) 5x2 - 10xy + 5y2 - 20z2
= 5 [(x2 - 2xy + y2 ) - 4z2 ]
= 5 [( x - y )2 - ( 2z )2 ]
= 5 ( x - y - 2z ) ( x - y + 2z )
c) x3 - x + 3x2y + 3xy2+ y3- y
= ( x3 + 3x2y + 3xy2 + y3 ) - ( x + y )
= (x + y )3 - ( x + y)
= ( x + y ) [( x + y )2 - 1 ]
= ( x + y ) ( x + y + 1 ) ( x + y - 1 )
Phân tích thành nhân tử :
a) \(x^4+2x^3+x^2\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
c) \(5x^2-10xy+5y^2-20z^2\)
a) \(x^4+2x^3+x^2=\left(x^2\right)^2+2.x^2.x+x^2=\left(x^2+x\right)^2\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y=x^3+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x-y\right)^3-\left(x+y\right)\)
c) \(5x^2-10xy+5y^2-20z^2=\left(\sqrt{5}x-\sqrt{5}y\right)^2-20z^2\)
Câu b :
\(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
Câu c :
\(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2\right)-20z^2\)
\(=5\left(x-y\right)^2-20z^2\)
\(=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y+2z\right)\left(x-y-2z\right)\)
a) x4 + 2x3 + x2 =
= x2(x2 + 2x +1)
= x2(x + 1)2
b) x3 - x + 3x2 y + 3x y2 + y3 - y =
= ( x3 + 3x2 y + 3x y2 + y3 ) - ( x + y)
= ( x + y)3 - ( x + y)
= ( x + y) [ ( x + y )2 - 1]
= ( x + y) ( x + y - 1) ( x + y - 1)
c) 5x2 - 10 xy + 5y2 - 20z2 =
= 5( x2 - 2 xy + y2 - 4 z2 )
= 5[ ( x - y )2 - ( 2 z )2 ]
= 5( x - y - 2z )( x - y + 2z)
Phân tích các đa thức sau thành nhân tử:
a, x^2 - x - y^2 - y
b, a^3 - a^2x - ay
c, 5x^2 - 10xy + 5y - 20z^2
d, x^3 - x +3x^2y + 3xy^2 + y^3 - y
a) \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
a) \(^{x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)}\)
b)\(a^3-a^2x-ay=a\left(a^2-a.x-y\right)\)
c)\(5x^2-10xy+5y-20z^2=-20z^2+\left(5-10x\right)y+5x^2 \)
\(=-5\left(4z^2+2xy-y-x^2\right)\)
d)\(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3xy^2+3x^2y+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
\(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
hk tốt
Phân tích các đa thức sau thành nhân tử : 14x^2y-21xy^2+28x^2y^2 x(x+y)-5x-5y 10x(x-y)-8(y-x ) (3x+1)^2 -(x+1)^2 x^3+y^3+z^3-3xyz 5x^2-10xy+5y^2-20z^2 x^3-x+3x^2y+3x^2y+3xy^2+y^3-y Mn đc lời giải chi tiết từng bước làm 1
\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Phân tích thành nhân tử:
a, x^4+2x^3+x^2
b, x^3-x+3x^2y+y^3-y
c, 5x^2-10xy+ey^2-20z^2
Phân tích thành nhân tử:
a)x^4+ 2x^3+ x^2
b)5x^2+ 5xy –x –y
c)x^3–x + 3x62y + 3xy^2+ y^3–y
d)5x^2–10xy + 5y^2–20z^2
a: \(x^4+2x^3+x^2=x^2\left(x+1\right)^2\)
b: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
phân tích đa thức bằng phương pháp tổng hợp:
a.16x-5x2-3
b.x^3-x+3x^2y+3xy^2+y^3-y
c.x^4+8x
d.x^2+x-6
e.5x^2-10xy+5y^2-20z^2
f.2(x^5)-x^2-5x
g.x^3-3x^2-4x+12
h.x^4-5x^2+4
a.16x-5x2-3 = - ( 5x2-16x+3) = -( 5x2-15x-x+3)= -[ 5x(x-3)-(x-3)] = -(5x-1)(x-3)
b.x^3-x+3x^2y+3xy^2+y^3-y = \(\left(x^3+3x^2y+3xy^2+y^3\right)-\)\(\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)=\)\(\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
c.x^4+8x = \(x\left(x^3+8\right)=x\left(x+2\right)\left(x^2-2x+4\right)\)
d.x^2+x-6 = \(x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)\)
\(=\left(x+3\right)\left(x-2\right)\)
e.5x^2-10xy+5y^2-20z^2\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y+2z\right)\left(x-y-2z\right)\)
f.2(x^5)-x^2-5x ( mik ko bik làm)
g.x^3-3x^2-4x+12 = \(x^2\left(x-3\right)-4\left(x-3\right)=\left(x^2-2^2\right)\left(x-3\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
h.x^4-5x^2+4 \(=\left(x^2\right)^2-4x^2+4-x^2\)
\(=\left(x^2-2\right)-x^2=\left(x^2-2+x\right)\left(x^2-2-x\right)\)
phân tích thành nhân tử
a, x4 + 2x3 + x2
b, x^3 - x + 3x^2y + 3xy^2+y^3-y
c, 5x^2 - 10xy + 5y^2 - 20 z^2
a, x4 + 2x3 + x2 = \(x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2=\left[x\left(x+1\right)\right]^2=\)\(\left(x^2+x\right)^2\)
b, x^3 - x + 3x^2y + 3xy^2+y^3-y
x^3 + 3x^2y + 3xy^2+y^3- x - y
(x+y)^3 - (x+y)
=(x+y)[ (x+y)^2 - 1]
=(x+y)(x+y+1)(x+y-1)
c, 5x^2 - 10xy + 5y^2 - 20(c hỗ này có dấu gì ko???) z^2