tìm x biết :
4x(x+1) = 8(x+1)
x(2x+1) +\(\dfrac{1}{3}-\dfrac{2}{3}x=0\)
x(x-4) +(x-4)2 =0
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
2. Tìm x
a. \(\dfrac{4}{5}-3.\left|x\right|=\dfrac{1}{5}\) b. \(4x-\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{4}{5}\)
c. (2x-8)(10-5x)=0 d. \(\dfrac{3}{4}+\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}\)
a) Ta có: \(\dfrac{4}{5}-3\left|x\right|=\dfrac{1}{5}\)
\(\Leftrightarrow3\left|x\right|=\dfrac{4}{5}-\dfrac{1}{5}=\dfrac{3}{5}\)
\(\Leftrightarrow\left|x\right|=\dfrac{1}{5}\)
hay \(x\in\left\{\dfrac{1}{5};-\dfrac{1}{5}\right\}\)
b) Ta có: \(4x-\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{4}{5}\)
nên \(\dfrac{41}{10}x=\dfrac{4}{5}\)
hay \(x=\dfrac{8}{41}\)
c) Ta có: \(\left(2x-8\right)\left(10-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=8\\5x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
d) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}\)
\(\Leftrightarrow\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}-\dfrac{3}{4}=\dfrac{14}{4}-\dfrac{3}{4}=\dfrac{11}{4}\)
\(\Leftrightarrow\left|2x-1\right|=11\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=11\\2x-1=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=12\\2x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\)
a) (X-2)(x+3)-3(4x-2)=(x-4)\(^{^{ }2}\)
b) \(\dfrac{2x^2+1}{8}-\dfrac{7x-2}{12}=\dfrac{x^2-1}{4}-\dfrac{x-3}{6}\)
c) \(x-\dfrac{2x-2}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
d) \(\left(2x+5\right)^2=\left(x+2\right)^2\)
e) \(x^2-5+6=0\)
g) \(2x^3+6x^2=x^2+3x\)
h) \(\left(x+\dfrac{1}{2}\right)^2+2\left(x+\dfrac{1}{x}\right)-8=0\)
mọi người giúp e với ạ
\(a,\left(x-2\right)\left(x-3\right)-3\left(4x-2\right)=\left(x-4\right)^2\\ \Leftrightarrow x^2-5x+6-12x+6=x^2-8x+16\\ \Leftrightarrow-9x-4=0\\ \Leftrightarrow x=-\dfrac{4}{9}\)
\(b,\dfrac{2x^2+1}{8}-\dfrac{7x-2}{12}=\dfrac{x^2-1}{4}-\dfrac{x-3}{6}\\ \Leftrightarrow6x^2+3-14x+4=6x^2-6-4x+12\\ \Leftrightarrow10x=1\\ \Leftrightarrow x=\dfrac{1}{10}\)
\(c,x-\dfrac{2x-2}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\\ \Leftrightarrow30x-12x+12+5x+40=210+10x-10\\ \Leftrightarrow13x=148\\ \Leftrightarrow x=\dfrac{148}{13}\)
\(d,\left(2x+5\right)^2=\left(x+2\right)^2\\ \Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+5-x-2\right)\left(2x+5+x+2\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{7}{3}\end{matrix}\right.\)
\(e,x^2-5x+6=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
\(g,2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
\(h,\left(x+\dfrac{1}{x}\right)^2+2\left(x+\dfrac{1}{x}\right)-8=0\left(x\ne0\right)\)
Đặt \(x+\dfrac{1}{x}=t\), pt trở thành:
\(t^2+2t-8=0\\ \Leftrightarrow\left(t-2\right)\left(t+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1-2x=0\\x^2+1+4x=0\left(1\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\Delta\left(1\right)=16-4=12>0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)
Tick plzz
a: Ta có: \(\left(x-2\right)\left(x+3\right)-3\left(4x-2\right)=\left(x-4\right)^2\)
\(\Leftrightarrow x^2+x-6-12x+6-x^2+8x-16=0\)
\(\Leftrightarrow-3x=16\)
hay \(x=-\dfrac{16}{3}\)
b: Ta có: \(\dfrac{2x^2+1}{8}-\dfrac{7x-2}{12}=\dfrac{x^2-1}{4}-\dfrac{x-3}{6}\)
\(\Leftrightarrow6x^2+3-14x+4=6x^2-6-4x+12\)
\(\Leftrightarrow-14x+7+4x-6=0\)
\(\Leftrightarrow10x=1\)
hay \(x=\dfrac{1}{10}\)
c: Ta có: \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)
\(\Leftrightarrow23x+70=10x+200\)
\(\Leftrightarrow x=10\)
a) \(x\left(x+4\right)-4x+1=0\)
b) \(2\left(x-3\right)+4=2x+2\)
c) \(\dfrac{x+3}{2}-\dfrac{2x+1}{4}=\dfrac{1}{4}\)
d) \(\dfrac{x^2+3x}{x+3}+3=0\)
e) \(x^2-3x\left(x-1\right)-3x-2=0\)
a: =>x^2+4x-4x+1=0
=>x^2+1=0
=>Loại
b: =>2x-6+4=2x+2
=>-2=2(loại)
c: =>2(x+3)-2x-1=1
=>6-1=1
=>5=1(loại)
d =>x+3=0
=>x=-3(loại)
e: =>x^2-3x^2+3x-3x-2=0
=>-2x^2-2=0
=>x^2+1=0
=>Loại
\(A=\left(\dfrac{x-1}{x^2-2x}+\dfrac{x+1}{x^2+2x}-\dfrac{4}{x^3-4x}\right)\div\dfrac{2x+4}{x^2-3x}\)
Tìm giátrị x để A \(\le\)0
\(A=\dfrac{x^2+x-2+x^2-x-2-4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}=\dfrac{2\left(x-2\right)\left(x+2\right)\left(x-3\right)}{2\left(x-2\right)\left(x+2\right)^2}=\dfrac{x-3}{x+2}\\ A\le0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\x+2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\x+2>0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< x< 3;x\ne0\left(ĐKXD\right)\)
a, \(\dfrac{x+2}{2x-4}-\dfrac{4x}{x^2-4}=0\)
b, \(\dfrac{x}{x-1}-\dfrac{5x-3}{x^2-1}=0\)
a, đk : x khác -2 ; 2
\(\left(x+2\right)^2-8x=0\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)(ktm)
pt vô nghiệm
b, đk : x khác -1 ; 1
\(x\left(x+1\right)-5x+3=0\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow x=1\left(ktm\right);x=3\left(tm\right)\)
Giải phương trình:
a) \(\dfrac{x^2-x-6}{x-3}=0\)
b) \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)
c) \(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
d) \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
e) \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)Thể loại truyện
a) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
Suy ra: x+2=0
hay x=-2(thỏa ĐK)
Vậy: S={-2}
d)
ĐKXĐ: \(x\notin\left\{1;3\right\}\)
Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)
Suy ra: \(x^2-3x+5x-15=x^2-1-8\)
\(\Leftrightarrow2x-15+9=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3(loại)
Vậy: \(S=\varnothing\)
Tìm x:
\(a,x^3+2x^2+x+2=0\)
\(b,x^3+4x^2+\dfrac{1}{4}x+1=0\)
Lời giải:
a. $x^3+2x^2+x+2=0$
$\Leftrightarrow (x^3+2x^2)+(x+2)=0$
$\Leftrightarrow x^2(x+2)+(x+2)=0$
$\Leftrightarrow (x+2)(x^2+1)=0$
$\Leftrightarrow x+2=0$ hoặc $x^2+1=0$
$\Leftrightarrow x=-2$ (chọn) hoặc $x^2=-1<0$ (loại)
b.
$x^3+4x^2+\frac{1}{4}x+1=0$
$\Leftrightarrow 4x^3+16x^2+x+4=0$
$\Leftrightarrow (4x^3+16x^2)+(x+4)=0$
$\Leftrightarrow 4x^2(x+4)+(x+4)=0$
$\Leftrightarrow (x+4)(4x^2+1)=0$
$\Leftrightarrow x+4=0$ hoặc $4x^2+1=0$
$\Leftrightarrow x=-4$ (chọn) hoặc $x^2=\frac{-1}{4}<0$ (loại)
Giải phương trình
a) (x+3)(x+1)(x2+2)=0
b) (x2-4)(2x+1)=0
c) 4x2+4x+1=0
d) \(\dfrac{2x}{3}-3\left(7-x\right)=\dfrac{4x-11}{8}\)
e) \(\dfrac{5\left(x-3\right)}{2}-\dfrac{4}{3}=\dfrac{3\left(x-1\right)}{4}+6\)
f) \(\dfrac{2}{3x}-\dfrac{1}{2x}=\dfrac{3}{4x^2}\)
g) \(\dfrac{2}{x-3}=\dfrac{1}{x+2}\)
h)\(\dfrac{3}{x+3}-\dfrac{1}{x-2}=\dfrac{5}{2\left(x+3\right)}\)
câu a) và b) thì sử dụng tính chất nếu tích =0 thì có ít nhất 1 thừa số =0
c)4x^2+4x+1=0
(2x+1)^2=0
2x+1=0
x=-1/2
a: =>(x+3)(x+1)=0
=>x=-3 hoặc x=-1
b: =>(x-2)(x+2)(2x+1)=0
hay \(x\in\left\{2;-2;-\dfrac{1}{2}\right\}\)
c:=>(2x+1)^2=0
=>2x+1=0
=>x=-1/2
d: \(\Leftrightarrow x\cdot\dfrac{2}{3}-21+3x=\dfrac{1}{2}x-\dfrac{11}{8}\)
=>19/6x=157/8
=>x=471/76
g: =>2x+4=x-3
=>x=-7