Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Trần Hồng Anh
Xem chi tiết
Trần Thị Quỳnh Mai
Xem chi tiết
lê thị thu huyền
23 tháng 9 2017 lúc 20:41

a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

nhân cả hai vế với \(\sqrt{2}\), ta được:

\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)

\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)

\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)

\(=\sqrt{7}-1-\sqrt{7}-1\)

\(=-2\)

\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)

Mafia
12 tháng 5 2018 lúc 18:48

a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

Chu Hoàng Lân
4 tháng 10 2020 lúc 16:40

wwreftr

Khách vãng lai đã xóa
Ly Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2021 lúc 21:44

c: Ta có: \(C=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

\(=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\sqrt{10}\)

Nguyễn Văn Anh Kiệt
Xem chi tiết
Rau
3 tháng 8 2017 lúc 15:26

\(Xét-biểu-thức:=>T=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}.\\ \)
Bình phương T thì được điều bất ngờ =))))))))))))

Trần Hồ Tú Loan
Xem chi tiết
bí ẩn
Xem chi tiết
Yeutoanhoc
26 tháng 6 2021 lúc 14:54

`1)A=sqrt{4+sqrt{10+2sqrt5}}+sqrt{4-sqrt{10+2sqrt5}}`

`<=>A^2=4+sqrt{10+2sqrt5}+4-sqrt{10+2sqrt5}+2sqrt{16-10-2sqrt5}`

`<=>A^2=8+2sqrt{6-2sqrt5}`

`<=>A^2=8+2sqrt{(sqrt5-1)^2}`

`<=>A^2=8+2(sqrt5-1)`

`<=>A^2=6+2sqrt5=(sqrt5+1)^2`

`<=>A=sqrt5+1(do \ A>0)`

`b)B=sqrt{35+12sqrt6}-sqrt{35-12sqrt6}`

Vì `35+12sqrt6>35-12sqrt6`

`=>B>0`

`B^2=35+12sqrt6+35-12sqrt6-2sqrt{35^2-(12sqrt6)^2}`

`<=>B^2=70-2sqrt{361}`

`<=>B^2=70-2sqrt{19^2}=70-38=32`

`<=>B=sqrt{32}=4sqrt2(do \ B>0)`

`3)(4+sqrt{15})(sqrt{10}-sqrt6)sqrt{4-sqrt{15}}`

`=sqrt{4+sqrt{15}}.sqrt{4-sqrt{15}}.sqrt{4+sqrt{15}}(sqrt{10}-sqrt6)`

`=sqrt{16-15}.sqrt2(sqrt5-sqrt3).sqrt{4+sqrt{15}}`

`=sqrt{8+2sqrt{15}}(sqrt5-sqrt3)`

`=sqrt{5+2sqrt{5.3}+3}(sqrt5-sqrt3)`

`=sqrt{(sqrt5+sqrt3)^2}(sqrt5-sqrt3)`

`=(sqrt5+sqrt3)(sqrt5-sqrt3)`

`=5-3=2`

Alice dono
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2020 lúc 12:32

a) Ta có: \(\sqrt{11-2\sqrt{10}}\)

\(=\sqrt{10-2\cdot\sqrt{10}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{10}-1\right)^2}\)

\(=\left|\sqrt{10}-1\right|=\sqrt{10}-1\)

b) Ta có: \(\sqrt{9-2\sqrt{14}}\)

\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{7}-\sqrt{2}\right|\)

\(=\sqrt{7}-\sqrt{2}\)

c) Ta có: \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\)

\(=\sqrt{3}+1+\sqrt{3}-1\)

\(=2\sqrt{3}\)

d) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5+2\cdot\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)

\(=\sqrt{5}-2-\left(\sqrt{5}+2\right)\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

e) Ta có: \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}\right)-\sqrt{2}\cdot\left(\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}-\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\left(\sqrt{7}+1\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

g) Ta có: \(\sqrt{3}+\sqrt{11+6\sqrt{2}}+\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{3}+\sqrt{9+2\cdot3\cdot\sqrt{2}+2}+\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}\)

\(=\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)

\(=\sqrt{3}+\left|3+\sqrt{2}\right|+\left|\sqrt{2}+\sqrt{3}\right|\)

\(=\sqrt{3}+3+\sqrt{2}+\sqrt{2}+\sqrt{3}\)

\(=3+2\sqrt{3}+2\sqrt{2}\)

h) Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{3+2\cdot\sqrt{3}\cdot2+4}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{\left(\sqrt{3}+2\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\cdot\left(\sqrt{3}+2\right)}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\sqrt{3}-20}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\left(5-\sqrt{3}\right)}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{25}=5\)

k) Ta có: \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)

\(=\sqrt{49-2\cdot7\cdot\sqrt{45}+45}-\sqrt{49+2\cdot7\cdot\sqrt{45}+45}\)

\(=\sqrt{\left(7-\sqrt{45}\right)^2}-\sqrt{\left(7+\sqrt{45}\right)^2}\)

\(=\left|7-\sqrt{45}\right|-\left|7+\sqrt{45}\right|\)

\(=7-\sqrt{45}-\left(7+\sqrt{45}\right)\)

\(=7-\sqrt{45}-7-\sqrt{45}\)

\(=-2\sqrt{45}=-6\sqrt{5}\)

i) Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Leftrightarrow A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)

\(=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\cdot\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(=8+2\cdot\sqrt{16-\left(10+2\sqrt{5}\right)}\)

\(=8+2\cdot\sqrt{6-2\sqrt{5}}\)

\(=8+2\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=8+2\cdot\left(\sqrt{5}-1\right)\)

\(=8+2\sqrt{5}-2\)

\(=6+2\sqrt{5}\)

\(=\left(\sqrt{5}+1\right)^2\)

\(\Leftrightarrow A=\sqrt{5}+1\)

Nguyễn Ngọc Cẩm Linh
Xem chi tiết
Rộp Rộp Rộp
Xem chi tiết
Kiyotaka Ayanokoji
25 tháng 7 2020 lúc 17:51

Trả lời:

\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)

\(A^2=4+\sqrt{10+2\sqrt{5}}+2.\sqrt{4+\sqrt{10+2\sqrt{5}}}.\sqrt{4-\sqrt{10+2\sqrt{5}}}+4-\sqrt{10+2\sqrt{5}}\)

\(A^2=8+2\sqrt{16-10-2\sqrt{5}}\)

\(A^2=8+2\sqrt{6-2\sqrt{5}}\)

\(A^2=8+2\sqrt{5-2\sqrt{5}+1}\)

\(A^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(A^2=8+2.\left(\sqrt{5}+1\right)\)

\(A^2=8+2\sqrt{5}-2\)

\(A^2=6+2\sqrt{5}\)

\(A^2=5+2\sqrt{5}+1\)

\(A^2=\left(\sqrt{5}+1\right)^2\)

\(A=\sqrt{5}+1\)

\(B=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(\sqrt{2}B=\sqrt{2}\sqrt{4+\sqrt{15}}+\sqrt{2}\sqrt{4-\sqrt{15}}-\sqrt{2}.2\sqrt{3-\sqrt{5}}\)

\(\sqrt{2}B=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

\(\sqrt{2}B=\sqrt{5+2\sqrt{15}+3}+\sqrt{5-2\sqrt{15}+3}-2\sqrt{5-2\sqrt{5}+1}\)

\(\sqrt{2}B=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(\sqrt{2}B=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\sqrt{5}+2\)

\(\sqrt{2}B=2\)

\(B=\sqrt{2}\)

Khách vãng lai đã xóa
Rộp Rộp Rộp
25 tháng 7 2020 lúc 18:23

Cảm ơn bạn nhiều nha UvU 

Khách vãng lai đã xóa
Nguyễn Thị Ngọc Diệp
Xem chi tiết