cho \(\dfrac{x}{7}=\dfrac{y}{4}\) và x-y=12 . tính x và y
1. Tìm x và y
a) \(\dfrac{x}{y}\) = \(\dfrac{3}{7}\) và x - y = 16
b) \(\dfrac{x}{1,8}\) = \(\dfrac{y}{3,2}\) và y - x = 7
c) \(\dfrac{x}{5}\) = \(\dfrac{y}{8}\) và x + 2y = 42
d) \(\dfrac{x}{5}\) = \(\dfrac{y}{7}\) và x . y = 35
2. Tính số học sinh của lớp 7A và lớp 7B , biết rằng lớp 7A ít hơn lớp 7B là 5 học sinh và tỉ số học sinh của hai lớp là 8 : 9
\(\dfrac{x}{y}=\dfrac{3}{7}.\\ \Rightarrow x=\dfrac{3}{7}y.\\ x-y=16.\\\Rightarrow\dfrac{3}{7}y-y=16.\\ \Rightarrow y=-28.\\ \Rightarrow x=-12.\)
\(\dfrac{x}{1,8}=\dfrac{y}{3,2}.\\ \Rightarrow\dfrac{x}{y}=\dfrac{1,8}{3,2}=\dfrac{9}{16}.\\ \Rightarrow x=\dfrac{9}{16}y.\\ y-x=7.\\ \Rightarrow y-\dfrac{9}{16}y=7.\\ \Leftrightarrow y=16.\\ \Leftrightarrow x=9.\)
\(\dfrac{x}{5}=\dfrac{y}{8}.\\ \Rightarrow\dfrac{x}{y}=\dfrac{5}{8}.\\ \Rightarrow x=\dfrac{5}{8}y.\\ x+2y=42.\\ \Rightarrow\dfrac{5}{8}y+2y=42.\\ \Leftrightarrow y=16.\\ \Rightarrow x=10.\)
\(\dfrac{x}{5}=\dfrac{y}{7}.\\ \Rightarrow\dfrac{x}{y}=\dfrac{5}{7}.\\ \Rightarrow x=\dfrac{5}{7}y.\\ x.y=35.\\ \Rightarrow\dfrac{5}{7}y.y=35.\\ \Leftrightarrow y^2=49.\\ \Leftrightarrow u=\pm7.\\ \Rightarrow x=\pm5.\)
1. Hãy tìm x và y
a) \(\dfrac{x}{y}\) = \(\dfrac{3}{7}\) và x - y = 16
b) \(\dfrac{x}{1,8}\) = \(\dfrac{y}{3,2}\) và y - x = 17
c) \(\dfrac{x}{5}\) = \(\dfrac{y}{8}\) và x + 2y = 42
d) \(\dfrac{x}{5}\) = \(\dfrac{y}{7}\) và x . y = 35
2. Tính số học sính của lớp 7A và lớp 7B , biết rằng lớp 7A ít hơn lớp 7B là 5 học sinh và tỉ số học sinh của hai lớp là 8:9
Bài 2:
Gọi số học sinh lớp 7A là x
Số học sinh lớp 7B là y
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{9}=\dfrac{y-x}{9-8}=\dfrac{5}{1}=5\)
Do đó: x=40; y=45
Tìm x,y biết:
1) \(\dfrac{x}{5}=\dfrac{y}{7}\) và x+y = 48
2) \(\dfrac{x}{4}=\dfrac{y}{-7}\) và x-y=33
3) \(\dfrac{x}{y}=-\dfrac{2}{5}\) và x+y =12
4) \(\dfrac{x}{3}=\dfrac{y}{5}\) và 2x+4y=28
5) \(\dfrac{x}{y}=\dfrac{3}{16}\) và 3x-y=35
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)
1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
a) Tìm 2 số x và y cho biết: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) và x + y = 28
b) Tìm 2 số x và y biết x : 2 = y : (-5) và x - y = (-7)
c) Tìm 3 số x, y, z biết rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) , \(\dfrac{y}{4}\)=\(\dfrac{z}{5}\) và x + y - z = 10
GIÚP MÌNH VỚI Ạ! TKS <3
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
cho \(\dfrac{3}{x}\)=\(\dfrac{y}{12}\)=\(\dfrac{3}{4}\) thì giá trị của x và y là:
A.x =4;y =9 B.x =-4;y =-9 C.x =12;y =3 D.x =-12;y =-3
1) 11x=8y và y-x= -42
2) \(\dfrac{x}{y}\) =\(\dfrac{9}{7}\)=\(\dfrac{y}{z}\) =\(\dfrac{7}{3}\) và x-y+z=- 15
3) \(\dfrac{x}{-7}\) = \(\dfrac{y}{4}\) và 2x-3y= -78
1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{11}=\dfrac{y-x}{11-8}=\dfrac{-42}{3}=-14\)
Do đó: x=-112;y=-154
Tìm x,y,z biết:
a) \(\dfrac{x}{5}=\dfrac{y}{2}\) và \(x-y=9\)
b) \(\dfrac{x-3}{12}=\dfrac{-3}{3-x}\)
c) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\) và \(x-y-z=-49\)
a: Áp dụng tính chất của DTSBN, ta được:
x/5=y/2=(x-y)/(5-2)=9/3=3
=>x=15; y=6
b: =>(x-3)/12=3/(x-3)
=>(x-3)^2=36
=>(x-9)(x+3)=0
=>x=9 hoặc x=-3
c; x/2=y/3
=>x/10=y/15
y/5=z/4
=>y/15=z/12
=>x/10=y/15=z/12=(x-y-z)/(10-15-12)=-49/-17=49/17
=>x=490/17; y=735/17; z=588/17
Tìm x,y,z biết :
1) \(\dfrac{x}{-7}=\dfrac{y}{4}\) và \(2x-3y=-78\)
2) \(\dfrac{x}{y}=\dfrac{9}{7};\dfrac{y}{z}=\dfrac{7}{3}\) và \(x-y+z=-15\)
1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)
=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)
2. Ta có:
- \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
- \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
1.\(\dfrac{x}{2}=\dfrac{y}{5}\)và x+y=21 2.7x=3y và x-y=16
3.\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}\)và x-y-z=36 4.x:y:z=3:5:7 và 2x+3y-z=-14
\(1,\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{21}{7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=15\end{matrix}\right.\\ 2,7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\\ \Rightarrow\left\{{}\begin{matrix}x=-12\\y=-28\end{matrix}\right.\\ 3,\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y-z}{5-6-7}=\dfrac{36}{-8}=-\dfrac{9}{2}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{45}{2}\\y=-27\\z=-\dfrac{63}{2}\end{matrix}\right.\\ 4,x:y:z=3:5:7\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x+3y-z}{6+15-7}=\dfrac{-14}{14}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-7\end{matrix}\right.\)
3. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y-z}{5-6-7}=\dfrac{36}{-8}=\dfrac{-9}{2}\)
\(x=\dfrac{-45}{2}\)
\(y=-27\)
\(z=\dfrac{-63}{2}\)