Cho abc=1
Tính L= 1/ab+a+b + b/bc+b+1 +1/abc+bc+b
Cho 3 số a,b,c thoả mãn abc = 105 và bc + b + 1 khác 0. Tính S = 105/abc + ab + a + b/ bc + b + 1 + a/ ab + a + 105
Cho a , b , c thỏa mãn abc = 105 và bc + b + 1 khác 0
Tính S = ( 105 / abc + ab + a ) + ( b / bc + b + 1 ) + ( a / ab + a +105 )
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(S=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(S=\frac{bc+b+1}{bc+b+1}=1\)
7.Cho a,b,c : abc=1.Tính:\(P\frac{1}{ab-a-1}+\frac{b}{bc+b+1}=\frac{1}{abc+bc+b}\)
Tính a ; b ; c thỏa mãn biết abc = 1
CMR : \frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}=1
Ta có: \(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}\)
\(=\frac{bc}{ab^2c+abc+bc}+\frac{b}{bc+b+1}+\frac{1}{1+bc+b}\)
\(=\frac{bc}{b+1+bc}+\frac{b}{bc+b+1}+\frac{1}{1+bc+b}\)
\(=\frac{bc+b+1}{bc+b+1}=1\left(đpcm\right)\)
Cho ba số tự nhiên A B C thoả mãn điều kiện ABC =105 và BC+B + 1 khác 0 tính GTBT sau :
V = 105/ABC+AB+A + B/BC+B+1 + A/AB+A+105
Cho a,b,c thỏa mãn abc=1.Chứng minh:1/ab+a+1 + 1/bc+b+1 + 1/abc+bc+b = 1
cho a,b,c thỏa mãn abc=1
tính 1/(1+a+ab) + 1/1+b+bc + 1/1+c+bc
Cho 3 số a,b,c thỏa mã abc=1. Hãy chứng minh rằng:
1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b
Ta có:
$\dfrac{1}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{abc+bc+b}$
$=\dfrac{abc}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{1}{1+bc+b}$ (do $abc=1$)
$=\dfrac{abc}{a(bc+b+1)}+\dfrac{b}{bc+b+1}+\dfrac{1}{1+bc+b}$
$=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{1+bc+b}$
$=\dfrac{bc+b+1}{bc+b+1}=1$
(đpcm)
Tính giá trị của biểu thức, biết abc=105, bc+b+1 khác 0
A=105/abc+ab+a + b/bc+b+1 + a/ab+a+105