Tính
\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)
Tính:
a) (6 : \(\dfrac{3}{5}\) \(1\dfrac{1}{6}\) x \(\dfrac{6}{7}\) ) : ( \(4\dfrac{1}{5}\) x \(\dfrac{10}{11}\) + \(5\dfrac{2}{11}\) )
b) (\(1-\dfrac{1}{2}\)) x (\(1-\dfrac{1}{3}\)) x (\(1-\dfrac{1}{4}\)) x ..... x (\(1-\dfrac{1}{2003}\)) x (\(1-\dfrac{1}{2007}\))
Bài 1: tính
a) 3\(\dfrac{1}{2}\) + 4\(\dfrac{5}{7}\) - 5\(\dfrac{5}{14}\) b) 4\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) : \(5\dfrac{1}{2}\)
bài 2: tìm X
a) X x \(3\dfrac{1}{3}\) = \(3\dfrac{1}{3}\) : \(4\dfrac{1}{4}\) b) \(5\dfrac{2}{3}\) : X = \(3\dfrac{2}{3}\) - \(2\dfrac{1}{2}\)
các giáo viên olm giúp e vs, e cần gấp lắm!
\(3\dfrac{1}{2}+4\dfrac{5}{7}-5\dfrac{5}{14}\)
= \(\dfrac{7}{2}+\dfrac{33}{7}-\dfrac{75}{14}\)
= \(\dfrac{49}{14}+\dfrac{66}{14}-\dfrac{75}{14}\)
= \(\dfrac{40}{14}=\dfrac{20}{7}\)
\(4\dfrac{1}{2}+\dfrac{1}{2}\div5\dfrac{1}{2}\)
=\(\dfrac{9}{2}+\dfrac{1}{2}\div\dfrac{11}{2}\)
=\(\dfrac{9}{2}+\dfrac{1}{2}\times\dfrac{2}{11}\)
=\(\dfrac{9}{2}+\dfrac{1}{11}\)
=\(\dfrac{101}{22}\)
\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)
\(x\times\dfrac{10}{3}=\dfrac{10}{3}\div\dfrac{17}{4}\)
\(x\times\dfrac{10}{3}=\dfrac{10}{3}\times\dfrac{4}{17}\)
\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)
\(x=\dfrac{40}{51}\div\dfrac{10}{3}\)
\(x=\dfrac{40}{51}\times\dfrac{3}{10}\)
\(x=\dfrac{120}{510}=\dfrac{12}{51}=\dfrac{4}{7}\)
\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{11}{3}-\dfrac{5}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\times\dfrac{6}{7}\)
\(x=\dfrac{102}{21}=\dfrac{34}{7}\)
a) Tính A = ( 1 - \(\dfrac{1}{2}\) )( 1 - \(\dfrac{1}{3}\) ) (1-\(\dfrac{1}{4}\) ) ....(1-\(\dfrac{1}{2014}\) ) (1-\(\dfrac{1}{2015}\) ) (1-\(\dfrac{1}{2016}\) )
b)Tìm x biết \(\dfrac{x-2}{12}\) + \(\dfrac{x-2}{20}\) + \(\dfrac{x-2}{30}\)+ \(\dfrac{x-2}{42}\) + \(\dfrac{x-2}{56}\) +\(\dfrac{x-2}{72}\) = \(\dfrac{16}{9}\)
a) Ta có: \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2014}\right)\left(1-\dfrac{1}{2015}\right)\left(1-\dfrac{1}{2016}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2013}{2014}\cdot\dfrac{2014}{2015}\cdot\dfrac{2015}{2016}\)
\(=\dfrac{1}{2016}\)
b) Ta có: \(\dfrac{x-2}{12}+\dfrac{x-2}{20}+\dfrac{x-2}{30}+\dfrac{x-2}{42}+\dfrac{x-2}{56}+\dfrac{x-2}{72}=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{3}-\dfrac{1}{9}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\cdot\dfrac{2}{9}=\dfrac{16}{9}\)
\(\Leftrightarrow x-2=\dfrac{16}{9}:\dfrac{2}{9}=\dfrac{16}{9}\cdot\dfrac{9}{2}=8\)
hay x=10
Vậy: x=10
1/ \(\dfrac{5x+1}{8}-\dfrac{x-2}{4}=\dfrac{1}{2}\)
2/ \(\dfrac{x+3}{4}+\dfrac{1-3x}{3}=\dfrac{-x+1}{18}\)
3/ \(\dfrac{x+2}{4}-\dfrac{5x}{6}=\dfrac{1-x}{3}\)
4/ \(\dfrac{x-3}{2}-\dfrac{x+1}{10}=\dfrac{x-2}{5}\)
5/ \(\dfrac{4x+1}{4}-\dfrac{9x-5}{12}+\dfrac{x-2}{3}=0\)
1: Ta có: \(\dfrac{5x+1}{8}-\dfrac{x-2}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow5x+1-2\left(x-2\right)=4\)
\(\Leftrightarrow5x+1-2x+4=4\)
\(\Leftrightarrow3x=-1\)
hay \(x=-\dfrac{1}{3}\)
2: Ta có: \(\dfrac{x+3}{4}+\dfrac{1-3x}{3}=\dfrac{-x+1}{18}\)
\(\Leftrightarrow9x+27+12-36x=-2x+2\)
\(\Leftrightarrow-27x+2x=2-39\)
hay \(x=\dfrac{37}{25}\)
3: Ta có: \(\dfrac{x+2}{4}-\dfrac{5x}{6}=\dfrac{1-x}{3}\)
\(\Leftrightarrow3x+6-10x=4-4x\)
\(\Leftrightarrow-7x+4x=4-6=-2\)
hay \(x=\dfrac{2}{3}\)
4: Ta có: \(\dfrac{x-3}{2}-\dfrac{x+1}{10}=\dfrac{x-2}{5}\)
\(\Leftrightarrow5x-15-x-1=2x-4\)
\(\Leftrightarrow4x-2x=-4+16=12\)
hay x=6
5: Ta có: \(\dfrac{4x+1}{4}-\dfrac{9x-5}{12}+\dfrac{x-2}{3}=0\)
\(\Leftrightarrow12x+3-9x+5+4x-8=0\)
\(\Leftrightarrow7x=0\)
hay x=0
Giải các pt sau:
1)\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+1}=\dfrac{3}{2-x}\)
2)\(\dfrac{3x+1}{1-3x}+\dfrac{3+x}{3-x}=2\)
3)\(\dfrac{8x-2}{3}=1+\dfrac{5-2x}{4}\)
4)
\(\dfrac{x}{x+1}-\dfrac{2x+3}{x}=\dfrac{-3}{x+1}-\dfrac{3}{x}\)
5)\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
6)\(\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
giúp mình với cám ơn
1: Sửa đề: 2/x+2
\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)
=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>4x-3=-3x-6
=>7x=-3
=>x=-3/7(nhận)
2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)
=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)
=>-6x^2+6=2(3x^2-10x+3)
=>-6x^2+6=6x^2-20x+6
=>-12x^2+20x=0
=>-4x(3x-5)=0
=>x=5/3(nhận) hoặc x=0(nhận)
3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)
=>x*19/6=35/12
=>x=35/38
Giải phương trình
1, \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)
2, \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2-3x}=\dfrac{9x^2}{9x^2-4}\)3, \(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x-1}{2x^2+2}\)4, \(\dfrac{2}{x+1}+\dfrac{3x+1}{x+1}=\dfrac{1}{\left(x+1\right)\left(x-2\right)}\)5, \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)
1) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3x^2-2x+1\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8-3x^2+2x-1=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=-\dfrac{7}{23}\)(nhận)
Vậy: \(S=\left\{-\dfrac{7}{23}\right\}\)
2) ĐKXĐ: \(x\notin\left\{\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
Ta có: \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2-3x}=\dfrac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\dfrac{3x+2}{3x-2}+\dfrac{6}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\dfrac{3x+8}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(3x+8\right)\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
Suy ra: \(9x^2+6x+24x+16=9x^2\)
\(\Leftrightarrow30x+16=0\)
\(\Leftrightarrow30x=-16\)
hay \(x=-\dfrac{8}{15}\)(nhận)
Vậy: \(S=\left\{-\dfrac{8}{15}\right\}\)
Tính:
\(a,\dfrac{x+3}{2x-1}-\dfrac{x^2-5}{4x^2-4x+1}-\dfrac{2x^3+5x^2-x-1}{8x^3-12x^2+6x-1}\)
\(b,\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
tìm x
\(x-\dfrac{1}{2}=\dfrac{3}{4}\)
\(x+\dfrac{7}{8}=\dfrac{3}{4}\)
\(\dfrac{1}{2}.x-\dfrac{1}{4}=\dfrac{-1}{2}\)
\(\dfrac{1}{2}-\dfrac{5}{6}:x=\dfrac{2}{3}\)
\(x-\dfrac{1}{2}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}+\dfrac{1}{2}\)
\(x=\dfrac{5}{4}\)
\(x+\dfrac{7}{8}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}-\dfrac{7}{8}\)
\(x=\dfrac{-1}{8}\)
\(\dfrac{1}{2}\cdot x-\dfrac{1}{4}=\dfrac{-1}{2}\)
\(\dfrac{1}{2}\cdot x=\dfrac{-1}{2}+\dfrac{1}{4}\)
\(\dfrac{1}{2}\cdot x=\dfrac{-1}{4}\)
\(x=\dfrac{-1}{4}\div\dfrac{1}{2}\)
\(x=\dfrac{-1}{2}\)
Câu D ko bt
\(\dfrac{x-1}{21}=\dfrac{3}{x+1}\)
\(2\dfrac{1}{2}x+x=2\dfrac{1}{17}\)
\(\left(x+\dfrac{1}{4}-\dfrac{2}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\)
\(2\dfrac{1}{3}x-1\dfrac{3}{4}x+2\dfrac{2}{3}=3\dfrac{3}{5}\)
Giúp mình với ! Mình cần gấp
a, \(\dfrac{x-1}{21}\) = \(\dfrac{3}{x+1}\)
( x-1)(x+1) = 21.3
x2 + x - x -1 = 63
x2 = 63 + 1
x2 = 64
x = + - 8
b, 2\(\dfrac{1}{2}\)x + x = 2\(\dfrac{1}{17}\)
x( \(\dfrac{5}{2}\) + 1) = \(\dfrac{35}{17}\)
x = \(\dfrac{35}{17}\) : ( \(\dfrac{5}{2}\)+1)
x = \(\dfrac{35}{17}\) x \(\dfrac{2}{7}\)
x = \(\dfrac{10}{17}\)
c, (x + \(\dfrac{1}{4}\) - \(\dfrac{2}{3}\) ) : ( 2 + \(\dfrac{1}{6}\) - \(\dfrac{1}{4}\)) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)): \(\dfrac{23}{12}\) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)) = \(\dfrac{7}{46}\) x \(\dfrac{23}{12}\)
x - \(\dfrac{5}{12}\) = \(\dfrac{7}{12}\)
x = \(\dfrac{7}{12}\) + \(\dfrac{5}{12}\)
x = 1
d, 2\(\dfrac{1}{3}\)x - 1\(\dfrac{3}{4}\)x + \(2\dfrac{2}{3}\) = 3\(\dfrac{3}{5}\)
x( \(\dfrac{7}{3}\) - \(\dfrac{7}{4}\)) + \(\dfrac{8}{3}\) = \(\dfrac{18}{5}\)
x\(\dfrac{7}{12}\) = \(\dfrac{18}{5}\) - \(\dfrac{8}{3}\)
x\(\dfrac{7}{12}\) = \(\dfrac{14}{15}\)
x = \(\dfrac{14}{15}\) : \(\dfrac{7}{12}\)
x = \(\dfrac{8}{5}\)
1) \(\dfrac{4x+7}{x-1}\) = \(\dfrac{12x+5}{3x+4}\)
2) \(\dfrac{x}{x-1}\) - \(\dfrac{2x}{x^{2^{ }}-1}\) = 0
3) \(\dfrac{1}{3-x}\) - \(\dfrac{14}{x^2-9}\) = 1
4) \(\dfrac{x+1}{x-1}\) - \(\dfrac{x-1}{x+1}\) = \(\dfrac{4}{x^2-1}\)
5) x + \(\dfrac{1}{x}\) = x2 + \(\dfrac{1}{x^2}\)
6) \(\dfrac{x-1}{x^2+4}\) = \(\dfrac{x-1}{x+1}\)
1/ \(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\) (1)
Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\3x+4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-\dfrac{4}{3}\end{matrix}\right.\)
(1) \(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\\\Leftrightarrow12x^2+16x+21x+28=12x^2-12x+5x-5\\ \Leftrightarrow\left(16+21+12-5\right)x=-5-28\\ \Leftrightarrow44x=-33\\ \Leftrightarrow x=-\dfrac{3}{4}\) (Thỏa mãn)
Vậy \(x=-\dfrac{3}{4}\).
2/ \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\) (2)
Điều kiện: \(x\ne\pm1\)
(2)\(\Leftrightarrow\dfrac{x}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x\left(x+1\right)-2x}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow x\left(x+1\right)-2x=0\\ \Leftrightarrow x^2+x-2x=0\\ \Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
So sánh với điều kiện \(\Rightarrow x=0\) là nghiệm của PT.
3/ \(\dfrac{1}{3-x}-\dfrac{14}{x^2-9}=1\) (3)
Điều kiện: \(x\ne\pm3\)
(3)\(\Leftrightarrow\dfrac{1}{3-x}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=1\\ \Leftrightarrow-\dfrac{\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\\ \Leftrightarrow-\left(x+3\right)-14=\left(x-3\right)\left(x+3\right)\\ \Leftrightarrow-x-17=x^2-9\Leftrightarrow x^2+x+8=0\) (Vô nghiệm do \(x^2+x+8>0\qquad\forall x\)).
Vậy PT vô nghiệm.
4/ \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\) (4)
Điều kiện: \(x\ne\pm1\)
(4)\(\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)=4\Leftrightarrow4x=4\Leftrightarrow x=1\) (loại)
Vậy PT vô nghiệm.
5/ \(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\) (5)
Điều kiện: \(x\ne0\)
(5)\(\Leftrightarrow x+\dfrac{1}{x}=\left(x+\dfrac{1}{x}\right)^2-2\)
Đặt \(t=x+\dfrac{1}{x}\), ta có: \(t=t^2-2\\ \Leftrightarrow t^2-t-2=0\Leftrightarrow\left(t-2\right)\left(t+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-1\end{matrix}\right.\)
Với \(t=2\) ta có: \(x+\dfrac{1}{x}=2\Leftrightarrow x^2+1=2x\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\) (thỏa mãn)
Với \(t=-1\) ta có: \(x+\dfrac{1}{x}=-1\Leftrightarrow x^2+1=-x\Leftrightarrow x^2+x+1=0\) (vô nghiệm).
Vậy \(x=1\) là nghiệm PT.
6/ \(\dfrac{x-1}{x^2+4}=\dfrac{x-1}{x+1}\) (6)
Điều kiện: \(x\ne-1\)
(6)\(\Leftrightarrow\dfrac{x-1}{x^2+4}-\dfrac{x-1}{x+1}=0\\ \Leftrightarrow\left(x-1\right)\left(\dfrac{1}{x^2+4}-\dfrac{1}{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x^2+4}-\dfrac{1}{x+1}=0\end{matrix}\right.\)
\(x-1=0\Leftrightarrow x=1\) (Thỏa mãn)
\(\dfrac{1}{x^2+4}-\dfrac{1}{x+1}=0\Leftrightarrow\dfrac{1}{x^2+4}=\dfrac{1}{x+1}\Leftrightarrow x^2+4=x+1\\ \Leftrightarrow x^2-x+3=0\) (vô nghiệm).
Vậy \(x=1\) là nghiệm PT.
1) ĐKXĐ: \(x\notin\left\{1;-\dfrac{4}{3}\right\}\)
Ta có: \(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)
\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)
\(\Leftrightarrow12x^2+16x+21x+28=12x^2+12x+5x-5\)
\(\Leftrightarrow12x^2+37x+28-12x^2-17x+5=0\)
\(\Leftrightarrow20x+33=0\)
\(\Leftrightarrow20x=-33\)
\(\Leftrightarrow x=-\dfrac{33}{20}\)(nhận)
Vậy: \(S=\left\{-\dfrac{33}{20}\right\}\)
2) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
Suy ra: \(x^2+x-2x=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=1\left(loại\right)\end{matrix}\right.\)
Vậy: S={0}
3) ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
Ta có: \(\dfrac{1}{3-x}-\dfrac{14}{x^2-9}=1\)
\(\Leftrightarrow\dfrac{-1}{x-3}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=1\)
\(\Leftrightarrow\dfrac{-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(-x-3-14=x^2-9\)
\(\Leftrightarrow x^2-9=-x-17\)
\(\Leftrightarrow x^2-9+x+17=0\)
\(\Leftrightarrow x^2+x+8=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{31}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{31}{4}=0\)(vô lý)
Vậy: \(S=\varnothing\)
4) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2+2x+1-\left(x^2-2x+1\right)=4\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)
\(\Leftrightarrow4x=4\)
hay x=1(loại)
Vậy: \(S=\varnothing\)
5) ĐKXĐ: \(x\ne0\)
Ta có: \(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\)
\(\Leftrightarrow\dfrac{x^2+1}{x}=\dfrac{x^4+1}{x^2}\)
\(\Leftrightarrow x^2\left(x^2+1\right)=x\left(x^4+1\right)\)
\(\Leftrightarrow x^4+x^2=x^5+x\)
\(\Leftrightarrow x^5+x-x^4-x^2=0\)
\(\Leftrightarrow x\left(x^4-x^3-x+1\right)=0\)
\(\Leftrightarrow x\left[x^3\left(x-1\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x^3-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^2\cdot\left(x^2+x+1\right)=0\)
mà \(x^2+x+1>0\)
nên \(x\cdot\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x-1=0\end{matrix}\right.\Leftrightarrow x=1\)
Vậy: S={1}
6) ĐKXĐ: \(x\in R\)
Ta có: \(\dfrac{x-1}{x^2+4}=\dfrac{x-1}{x+1}\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x^2+4\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-\left(x-1\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1-x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-x^2+x-3\right)=0\)
\(\Leftrightarrow-\left(x-1\right)\left(x^2-x+3\right)=0\)
mà \(x^2-x+3>0\)
nên x-1=0
hay x=1(nhận)
Vậy: S={1}