Cho \(\Delta\)ABC vuông ở A,\(\widehat{B}\)<45độ.Trên nửa mặt phẳng bờ AB chứa C lấy D và E sao cho BD=BA và \(\widehat{DBA}\)=90độ,\(\widehat{EBC}\)=\(\widehat{CBA}\) và ED \(\perp\)BD.Chứng minh BE=AC+DE
cho \(\Delta ABC\) vuông ở A. \(\widehat{B}-\widehat{C}=30^0\).Vẽ đường phân giác AD và đường cao AH của \(\Delta ABC\).Tính \(\widehat{HAD}\)
Ôn tập:
1. Tìm x, y:
2. Cho \(\Delta\)DMN vuông tại M, biết \(\widehat{D}\)= 37\(^o\) và DN= 10cm. Giải tam giác vuông DMN?
3. Cho \(\Delta\)ABC \(\perp\) tại B, AB= 8cm, \(\widehat{A}\)= 53\(^o\). Giải \(\Delta\)ABC.
a) Áp dụng HTL ta có:\(MH.HP=MH^2\Rightarrow x=\sqrt{2.8}=4\)
\(BC=MH+HP=10\)
Áp dụng HTL ta có: \(HP.NP=MP^2\Rightarrow y=\sqrt{8.10}=4\sqrt{5}\)
b) Áp dụng HTL ta có: \(EQ.QF=DQ^2\Rightarrow x=\dfrac{4^2}{1}=16\)
\(EF=EQ+QF=17\)
Áp dụng HTL ta có: \(QP.EF=y^2\Rightarrow y=\sqrt{17.1}=\sqrt{17}\)
lkjytreedfyhgfdfgff
lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345
o7uujghhjhjhjjt6yi89-ơ-0
Cho\(\Delta\) ABC vuông ở A; AB= 6cm, AC= 8cm. Vẽ đường cao AH
a, Tính BC
b, Chứng minh: \(\Delta\) ABC đồng dạng với \(\Delta\) HBA
c, Chứng minh: AB\(^2\) = BD. BC. Tính HB, HC
d, Vẽ phân giác AD của\(\widehat{BAC}\) (D\(\in\) BC). Tính DB, AD
hình bạn tự vé nhé.
tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow6^2+8^2=BC^2\)
\(\Rightarrow BC=10\left(DO-BC>0\right)\)
b) xét \(\Delta ABC\) VÀ \(\Delta HBA\) CÓ:
\(\widehat{BAC}=\widehat{AHB}\)
\(\widehat{B}\) CHUNG
\(\Rightarrow\Delta ABC\) đồng dạng vs \(\Delta HBA\)
c)sửa đề:\(AB^2=BH.BC\)
TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)
\(\Rightarrow AH^2=BH.BC\)
bạn kia làm 2 câu đầu mình làm 2 câu cuối nhé :
c, \(\Delta AHB~\Delta CAB\)
\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BC.BH\)
\(\Rightarrow BH=\frac{AB^2}{BC}=3,6cm\)
\(\Rightarrow HC=6,4cm\)
d, AD phân giác \(\Delta ACB\)
\(\Rightarrow\frac{DC}{DB}=\frac{AC}{AB}=\frac{8}{6}=\frac{4}{3}\)( 1 )
\(\Rightarrow DC+DB=BC=10cm\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow DB=\frac{30}{7}cm\)
AD bạn tính nốt nhé
Cho \(\Delta\)ABC có \(\widehat{A}\)=105 độ, \(\widehat{B}\)=60 độ. Tia phân giác \(\widehat{B}\) cắt AC ở D. Qua điểm A, vẽ đường thẳng vuông góc với BD ở D. Đường thẳng này cắt BC ở E.
a/ CM: \(\Delta\)ADB=\(\Delta\)EOB
b/ Tính \(\widehat{DAE}\)
c/ CM: \(\Delta\)ADE vuông góc tại D
Help
GIÚP mink với mik đang cần siêu gấp
Bài 3. Cho \(\Delta\widehat{ABC}\) có \(\widehat{A}=\widehat{B}\) = 60°, Gọi X là tia phân giác của góc ngoài ở đinh C. Chứng
minh Cx // AB
Bài 4. Cho \(\Delta\widehat{ABC}\)vuông ở A. Tia phân giác của góc A cắt cạnh BC ở D, Kẻ AH \(\perp\) BCC
HE \(\perp\)BC )
a, Tính \(\widehat{C}\)
b,Tính \(\widehat{AHD}\)
c, Tính \(\widehat{HAD}\)
d. So sánh \(\widehat{HAC}\) và \(\widehat{ABC}\)
Bài 5. Cho \(\Delta ABC\) vuông ở A. Tia phân giác của góc B cắt cạnh AC ở E
a, Chứng minh \(\widehat{BEC}\)là góc tù
b, Biết \(\widehat{C}-\widehat{B}\)=10°. Tính \(\widehat{AEB}\) VÀ \(\widehat{BEC}\)
Cho \(\Delta ABC\), điểm M nằm trong \(\Delta\) đó . Tia BM cắt AC ở K.
a, So sánh \(\widehat{AMK}\) và \(\widehat{ABK}\)
b,So sánh \(\widehat{AMC}\) và \(\widehat{ABC}\)
Cho \(\Delta\) ABC có \(\widehat{B}-\widehat{C}=90^o\). Các đường phân giác trong và ngoài của \(\widehat{A}\) cắt BC ở D và E. Chứng minh \(\Delta\) ADE vuông cân
1, Cho \(\Delta ABC\) biết \(\widehat{A}\)=\(\widehat{B}\)=\(\widehat{C}\). Tính số đo của mỗi góc
2, Cho \(\Delta ABC\) biết \(\widehat{A}\)= 70 độ; \(\widehat{B}\)-\(\widehat{C}\)=10 độ. Tính \(\widehat{B}\); \(\widehat{C}\)
\(1,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \text{Mà }\widehat{A}=\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=\dfrac{180^0}{3}=60^0\\ 2,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=110^0\\ \text{Mà }\widehat{B}-\widehat{C}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+10^0\right):2=60^0\\\widehat{C}=60^0-10^0=50^0\end{matrix}\right.\)
Cho \(\Delta ABC\) vuông tại A . Kẻ AH vuông góc với BC ( \(H\in BC\) ) . Tia phân giác của các góc \(\widehat{HAC}\) và \(\widehat{HAB}\) lần lượt cắt BC ở D , E . Tính độ dài đoạn thẳng DE biết AB = 5cm ; AC = 12cm
- Ta có: \(\widehat{ABE}+\widehat{CAE}=90^0\) (AB⊥AC tại A).
\(\widehat{AEH}+\widehat{HAE}=90^0\) (△AHE vuông tại H).
Mà \(\widehat{CAE}=\widehat{HAE}\) (AE là phân giác của \(\widehat{HAC}\)).
=>\(\widehat{ABE}=\widehat{AEH}\).
=>△ABE cân tại B.
=>\(AB=BE\).
- Ta có: \(\widehat{DAC}+\widehat{BAD}=90^0\) (AB⊥AC tại A).
\(\widehat{HAD}+\widehat{ADH}=90^0\) (△AHE vuông tại H).
Mà \(\widehat{BAD}=\widehat{HAD}\) (AD là phân giác của \(\widehat{HAB}\)).
=>\(\widehat{DAC}=\widehat{ADH}\).
=>△ACD cân tại C.
=>\(AC=CD\).
- Xét △ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (định lí Py-ta-go).
=>\(BC^2=5^2+12^2\).
=>\(BC^2=169\).
=>\(BC=13\) (cm).
\(AB+AC-BC=BE+CD-BC=BE+CD-BE-CE=CD-CE=DE\)=>\(DE=5+12-13=4\) (cm).