Cho tam giác abc cân tại a. Đường trung tuyến BM. Gọi O là gd các đường trung trực tam giác ABC, E là trọng tâm tam giác ABM, G là trọng tâm tam giác ABC. CMR: EG//AC
Cho tam giác ABC cân tại A, đường trung tuyến BM. Gọi O là giao điểm các đường trung trực của tam giác ABC. E là trọng tâm của tam giác ABM. CMR : EO vuông góc với BM.
tam giác ABC cân tại A, BM la trung tuyến. O là gia điểm của các đường trung trực, E là trọng tâm của tam giác ABM. Chứng minhóc voi BM
tam giác ABC cân tại A, BM la trung tuyến. O là gia điểm của các đường trung trực, E là trọng tâm của tam giác ABM. Chứng minh EO vuông góc với BM
cho tam giác abc có M trung điểm của BC ,N là trung điểm của AC ,đường trung trực BC cắt dường trung trực của AC tại O,gọi H là trực tâm tam giác ABC
a cm tam giác AHB đồng dạng tam giác MNO
b gọi G là giao điểm của OH với AM cmr G là trọng tâm của tam giác ABC
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng với ΔMNO
b: A,G,M thẳng hàng và H,G,O thẳng hàng
=>góc AGH=góc MGO
=>ΔAHG đồng dạng với ΔMOG
=>OM/AH=MG/AG
=>OM/AH=MN/AB=1/2
=>GM/GA=1/2
=>G là trọng tâm của ΔACB
Cho tam giác ABC cân tai A có AH là đường trung tuyến ứng với cạnh BC A)chứng minh tâm giác AHB=tam giác AHC B)kẻ các đường trung tuyến BM và CN .Gọi G là trọng tâm của tam giác ABC Chứng minh tam giác GBC là tam giác cân C)qua C kẻ đường thẳng vuông góc với BC cắt đường thẳng BM tại từ G kẻ đường thẳng song song với BC. Chứng minh BC=2×GD
a: Xet ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
CB chung
=>ΔNBC=ΔMCB
=>góc GBC=góc GCB
=>ΔGCB cân tại G
c: góc ECG+góc BCG=90 độ
góc GBC+góc GEC=90 độ
mà góc BCG=góc GBC
nên góc ECG=góc GEC
=>GC=GE=GB
=>G là trung điểm của BE
Xét ΔEBC có GD//CB
nên GD/CB=EG/EB=1/2
=>CB=2GD
cho tam giác nhọn ABC, trung tuyến AM. Gọi H là trực tâm, O là giao điểm của các đường trung trực của tam giác ABC. CMR :
a, So sánh AH và OM.
b, gọi G là giao điểm của AM và HO. CMR G là trọng tâm của tam giác ABC
.1.Cho tam giác ABC cân tại A có AD là đường phân giác.
a) Chứng minh tam giác ABD = tam giác ACD
b) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm A, G, D thẳng hàng.
c) Tính DG biết AB 13cm,BC 10cm
2.Cho tam giác ABC vuông ở A, có AB = 16cm,AC = 30cm. Tính tổng các khoảng cách từ trọng tâm G của tam giác đến các đỉnh của tam giác.
3.Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt C ở N. Biết AN = MN, BN cắt AM ở O. Chứng minh: a) Tam giác ABC cân ở A
b) O là trọng tâm tam giác ABC.
4.Cho tam giác cân ABC, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm O cách đều 3 đỉnh của tam giác ABC.
Cần gấp ạ!
Cho tam giác ABC vuông tại A trung tuyến BM.Gọi O là giao điểm các đường trung trực của tam giác ABC. E là trọng tâm của tam giác ABM.Chứng minh EO vuông góc với BM
cho tam giác abc . Gọi m là trung điểm bc, n là trung điểm ac. các đường trung trực của bc và ac cắt nhau tại o , h là trực tâm và g là trọng tâm tam giác
a) CMR tam giác ABH đồng dạng vs MNO
b)CMR tam giác AHG đồng dạng vs MNO
c) CMR 3 điểm H, G, O thẳng hàng
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng vơi ΔMNO
b: G là trọng tâm của ΔABC
=>GM/GA=1/2
ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2
=>OM/AH=MG/AG
=>ΔHAG đồng dạng với ΔOMG
c: ΔHAG đồng dạng với ΔOMG
=>góc AGH=góc OGM
=>H,G,O thẳng hàng
cho tam giác abc cân tại a, nội tiếp đường tròn k. gọi m là trung điểm ac. g,e lần lượt là trọng tâm tam giác abc và tam giác abm. tìm toạ độ các điểm abc biết e(4/3,11), g(2,23/3), k(2,53/5)