Quy đồng mẫu các phân thức sau:
a) 1 phần x+2 và 8 phần 2x-x2
b) x2+1 và x2 phần x2-1
quy đồng các mẫu thức sau
a 1 / x3-8 và 3 / 4-2x
b x / x2-1 và 1 / x2+2x+1
c 1 / x+2 ; x+1 / x2-4x-4 và 5 / 2-x
d 1 / 3x+3y;2x / x2-y2 và x2-xy+y2 / x2-2xy+y2
a) \(\dfrac{1}{x^3-8}=\dfrac{1}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{2}{2\left(x-2\right)\left(x^2+2x+4\right)}\)
\(\dfrac{3}{4-2x}=\dfrac{-3}{2\left(x-2\right)}=\dfrac{-3\left(x^2+2x+4\right)}{2\left(x-2\right)\left(x^2+2x+4\right)}\)
b) \(\dfrac{x}{x^2-1}=\dfrac{x}{\left(x+1\right)\left(x-1\right)}=\dfrac{x\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\)
\(\dfrac{1}{x^2+2x+1}=\dfrac{1}{\left(x+1\right)^2}=\dfrac{x-1}{\left(x+1\right)^2\left(x-1\right)}\)
c) \(\dfrac{1}{x+2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)^2}\)
\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{x+2}{\left(x+2\right)\left(x-2\right)^2}\)
\(\dfrac{5}{2-x}=\dfrac{-5}{x-2}=\dfrac{-5\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^2}\)
d) \(\dfrac{1}{3x+3y}=\dfrac{1}{3\left(x+y\right)}=\dfrac{\left(x-y\right)^2}{3\left(x+y\right)\left(x-y\right)^2}\)
\(\dfrac{2x}{x^2-y^2}=\dfrac{2x}{\left(x+y\right)\left(x-y\right)}=\dfrac{6x\left(x-y\right)}{3\left(x+y\right)\left(x-y\right)^2}\)
\(\dfrac{x^2-xy+y^2}{x^2-2xy+y^2}=\dfrac{x^2-xy+y^2}{\left(x-y\right)^2}=\dfrac{3\left(x^2-xy+y^2\right)\left(x+y\right)}{3\left(x+y\right)\left(x-y\right)^2}=\dfrac{3\left(x^3+y^3\right)}{3\left(x+y\right)\left(x-y\right)^2}\)
Quy đồng mẫu các phân thức sau
a, 3x/2y2x và -y/6y2x
b, x+4/x2+x và x-3/x+1
c, x/x2-25 và x+2/x2-10x+25
d, x/x3-8 và 3x/x2-4+4 và 1/x2+2x+4
quy đồng các mẫu thức
a 3 / x-1;4 / 3x-3 và 10 / 9-9x
b 3 / 2(x-3) và 3x-2 / x2-6x+9
c 3 / x2+2x+1 và -2 / x2+x
cứu nhanh vssssssssssssssssssssssssssssssssssssssssssssssss
a: \(\dfrac{3}{x-1}=\dfrac{3\cdot9}{9\cdot\left(x-1\right)}=\dfrac{27}{9\left(x-1\right)}\)
\(\dfrac{4}{3x-3}=\dfrac{12}{9x-9}=\dfrac{12}{9\left(x-1\right)}\)
\(\dfrac{10}{9-9x}=\dfrac{-10}{9x-9}=-\dfrac{10}{9\left(x-1\right)}\)
b: \(\dfrac{3}{2\left(x-3\right)}=\dfrac{3x-9}{2\left(x-3\right)^2}\)
\(\dfrac{3x-2}{x^2-6x+9}=\dfrac{6x-4}{2\left(x-3\right)^2}\)
c: \(\dfrac{3}{x^2+2x+1}=\dfrac{3}{\left(x+1\right)^2}=\dfrac{3x}{x\left(x+1\right)^2}\)
\(-\dfrac{2}{x^2+x}=\dfrac{-2}{x\left(x+1\right)}=\dfrac{-2\left(x+1\right)}{x\left(x+1\right)^2}\)
quy đồng mẫu thức phân thức
2/x^2-5x+6 và 3/x-3
x^2-4x+4/x^2-2x và x+1/x^2-1
x^3-2^3/x2-4 và 3/x+2
2x/x2+3x+2 và 3x/x2+4x+3
Quy đồng mẫu của các phân thức sau: x 2 + 1 và x 4 x 2 - 1
Quy đồng mẫu của các phân thức sau: x 2 + 1 và x 4 x 2 - 1
Quy đồng mẫu thức các phân thức:
a) 1 x + 1 và 6 x − x 2 với x ≠ 0 và x ≠ ± 1 ;
b) y + 5 y 2 + 8 y + 16 và y 3 y + 12 với y ≠ − 4 .
Quy đồng mẫu thức hai phân thức: x + y x 2 y + x 2 ; 2 x − y y + 1
A. x - y x 2 y + x 2 = x - y x 2 ( y + 1 ) ; 2 x + y y + 1 = x 2 ( 2 x - y ) x 2 ( y + 1 )
B. x + y x 2 y - x 2 = x + y x 2 ( y - 1 ) ; 2 x - y y + 1 = x 2 ( 2 x - y ) x 2 ( y + 1 )
C. x + y x 2 y + x 2 = x + y x 2 ( y + 1 ) ; 2 x - y y + 1 = x 2 ( 2 x - y ) x 2 ( y + 1 )
D. x + y x 2 y + x 2 = x + y x ( y + 1 ) ; 2 x - y y + 1 = 2 x - y x 2 ( y + 1 )
Mẫu thức chung của 2 phân thức
3 phần x2+4x+4 và x+4 phần 2x2+4x
Quy đồng mẫu thức các phân thức sau:
a) x 2 + 2 và x 4 x 2 − 2 với x ≠ ± 2 ;
b) 4 m − 4 2 m 2 + 6 m và m − 3 5 m 2 + 10 với m ≠ − 3 ; m ≠ − 2 và m ≠ 0 .