Cho a+b+c=20
C/m 2bc+b^2+c^2-a^2=4p [p-a]
cho a + b +c =2p. c/m : 2bc + b^2 + c^2 -a^2 = 4p(p-a)
a+b +c = 2p
=> b +c = 2p - a
=> ( b + c)^2 = ( 2p -a)^2
=> b^2 + 2bc + c^2 = 4p^2 - 4ap + a^2
=> 2bc + b^2 + c^2 - a^2 = 4p^2 - 4ap
=> 2bc + b^2 + c^2 - a^2 = 4p ( p-a)
=> ĐPCM
( Xem lại đè = 4p(p - a) chứ không phải 4b( p-a)
a) Cho a+b+c=0 c/m: a^3+a^2c-abc+b^2c+b^3=0
b) Cho a+b+c=2p c/m: 2bc+b^2+c^2-a^2=4p(p-a)
(không được sử dụng hằng đẳng thức)
Cho ; a + b + c =2p . c/m: 2bc + b2 + c2 - a2 = 4p .( p - 2)
a + b +c = 2p => b + c = 2p- a
=> ( b + c)^2 = ( 2p -a )^2
=> b^2 + 2bc + c^2 = 4p^2 - 4pa +a^2
=> b^2 + 2bc + c^2 - a^2 = 4p^2 - 4pa
=> 2bc + b^2 + c^2 - a^2 = 4p(p-a)
=> ĐPCM
Cho a+b+c=2p.Chứng minh:
2bc+b^2+c^2-a^2=4p(p-a)
Vì:
a+b+c=2p => b+c=2p-a
Ta có (2bc+b^2+c^2)-a^2
= ( b+c)^2 -a^2
= (2p-a)^2 - a^2
= 4p^2 - 4pa + a^2 -a^2
= 4p(p+a) => đpcm
k cho mình
Có 2p=a+b+c
Suy ra:4p(p-a)=2p(2p-2a)
=(a+b+c)(a+b+c-2a)
=(a+b+c)(b+c-a)
=ab+ac-a^2+B^2+bc-ab+cb+c^2-ac
=2bc+b^2+c^2-a^2
Nhớ nhé!
Cho \(a+b+c=2p\). Chứng minh rằng:
\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
\(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(b+c+a\right)\cdot\left(b+c-a\right)\)
\(=2p\cdot\left(2p-a-a\right)\)
\(=4p\left(p-a\right)\)
2bc+b^2 +c^2 -a^2 =4p(p-a) với a+b+c =2p
\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Ta có:VT=\(\left(b+c\right)^2-a^2=\)\(\left(b+c-a\right)\left(a+b+c\right)=2p\left(2p-2a\right)\)
=\(4p\left(p-a\right)\)=VP
Vậy\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)
cho a+b+c = 2p. CMR: 2bc+b2+c2-a2=4p(p-a)
a + b +c = 2P => b+ c = 2P -a
=> ( b +c )^2 =( 2P -a )^ 2 => b^2 +c^2 +2bc = 4P^2 - 4Pa + a^2
= 2bc + b^2 +c^2 - a^2 = 4P( P -a ) => ĐPCM
4p(p-a)=2p(2p-2a)=(a+b+c)(b+c-a)=-a^2+b^2+2bc+c^2=VT=>đpcm
Ta có: 2bc+b2+c2-a2=(b2+2bc+c2)-a2
=(b+c)2-a2 (1)
Mà: a+b+c=2p=> b+c=2p-a. Thay b+c=2p vào (1) ta có:
(2p-a)2-a2=4p2-4ap+a2-a2=4p2-4ap=4p.(p-a) (ĐPCM)
Cho a + b + c = 2p. C/minh đẳng thức: \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Gọi \(2bc+b^2 +c^2-a^2=VT\)
và \(4p\left(p-a\right)=VP\)
Biến đổi VP ta có :
\(4p\left(p-a\right)=2p\left(2p-2a\right)\)
\(=\left(a+b+c\right)\left(b-c-a\right)\)
\(=2bc+b^2+c^2-a^2=VT\) (đpcm)
Vậy ......
Cho a + b + c = 2p. C/minh đẳng thức: \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Ta có: \(a+b+c=2p\)
\(\Rightarrow b+c=2p-a\Rightarrow\left(b+c\right)^2=\left(2p-a\right)^2\)
\(\Rightarrow b^2+2bc+c^2=4p^2-4pa+a^2\)
\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)
Vậy....
Ta có :
VT = \(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(b+c-a\right)\left(b+c+a\right)\)
\(=\left(b+c+a-2a\right).2p\)
\(=\left(2p-2a\right).2p\)
\(=4p\left(p-a\right)=VP\)
\(\left(đpcm\right)\)