Cho tam giác ABC cân tại A, các đường trung tuyến BM, CN. Chứng minh: BNMC là hình thang cân.
Cho tam giác ABC cân tại A ,đường trung tuyến BM và CN. Chứng minh tứ giác BNMC là hình thang cân
I don't now
or no I don't
..................
sorry
BM, CN là đường trung tuyến => AM = MC; AN = BN
Tam giác ABC có AM = MC; AN = BN
=> MN là đường trung tuyến tam giác ABC
=> MN // BC
=> BNMC là hình thang
mà góc NBC = góc MCB (gt)
=> hình thang BNMC là hình thang cân
Cho tam giác ABC cân tại A. Vẽ BM và CN là 2 đường trung tuyến. a/ Chứng minh: BM = CN b/Chứng minh: Tứ giác BNMC là hình thang cân. c/ Gọi I là giao điểm của BM và CN. Chứng minh: AI vuông góc với MN
cho tam giác ABC cân tại A . đường cao BM , CN cắt nhau tại H . chứng minh tứ giác BNMC là hinhf thang cân
cho tam giác abc cân tại a, kẻ trung tuyến BM, Cn biết góc BAC=80 độ... a) cmL: tứ giác bnmc là hình thang cân b) tính các góc của tam giác. c) gọi O là giao điểm của Bm và CN, trên tia đói của tia mo lấy i trên tia đối của no lấy k sao cho mi=nk. cm: bkic là hình thang cân
Nhìn bên phải, bấm vô thống kê hỏi đáp ạ, VÀO TRANG CÁ NHÂN CỦA E Em bức xúc lắm anh chị ạ, xl mấy anh chị vì đã gây rối Thiệt tình là ko chấp nhận nổi con nít ms 2k6 mà đã là vk là ck r ạ, bày đặt yêu xa, chưa lên đại học Đây là \'tội nhân\' https://olm.vn/thanhvien/nhu140826 và https://olm.vn/thanhvien/trungkienhy79
Cho tam giác ABC cân tại A,đường trung tuyến BM,CN của tam giác ABC
a.C/m tứ giác BNMC là hình thang
b.C/m MN=1/2BC
c.Tính chu vi hình thang BNMC biết AB=5cm,đường caoAH=3cm
Giúp mình với chiều nay đi học rồi
a) BM,CN là trung tuyến=> M trung điểm AC, N trung điểm AB
=> MN là đường trung bình tam giác ABC=> MN//BC=> BNMC là hình thang.
b) MN là đường trung bình tam giác ABC => MN=1/2.BC
c) Vì tam giác ABC cân tại A nên AH cũng là trung tuyến=> H trung điểm BC=> BC=2BH
Định lí PYTAGO cho tam giác AHB vuông tại H
\(\Rightarrow AB^2=AH^2+HB^2\Rightarrow BH=\sqrt{AB^2-AH^2}=4cm\)
\(\Rightarrow BC=2BH=8cm\)
\(\Rightarrow MN=\frac{1}{2}BC=4cm\)
M trung điểm AC, N trung điểm AB \(\Rightarrow NB=MC=\frac{1}{2}AB=2,5cm\)
=> Chu vi BNMC=MN+NB+BC+CM=4+2,5+8+2,5=17cm
CORONA mà đi học à bạn ?!
mình ở tp vinh bạn ạ
Cho tam giác ABC cân tại A có hai đường trung tuyến BM và CN cắt nhau tại G. Gọi P, Q lần lượt là trung điểm của BG và CG.
a) Tứ giác BNMC là hình gì? Vì sao?
b) Chứng minh MN // PQ; MN = PQ
c) Chứng minh
d) Chứng minh MNPQ là hình chữ nhật
Giúp mk với ạ
a: Xét ΔABC có
\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)
Do đó: MN//BC
Xét tứ giác BNMC có MN//BC
nên BNMC là hình thang
mà \(\widehat{NBC}=\widehat{MCB}\)
nên BMNC là hình thang cân
Cho tam giác ABC cân tại A có hai đường trung tuyến BM và CN cắt nhau tại G. Gọi P, Q lần lượt là trung điểm của BG và CG.
a) Tứ giác BNMC là hình gì? Vì sao?
b) Chứng minh MN // PQ; MN = PQ
c) Chứng minh
d) Chứng minh MNPQ là hình chữ nhật
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
Xét tứ giác BNMC có NM//BC
nên BNMC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BNMC là hình thang cân
Cho tam giác ABC cân tại A. Đường trung tuyến AM, BN. Chứng minh :
a) Tam giác AMN cân.
b) Tứ giác BNMC là hình thang cân.
bạn ơi đề đúng ko zậy bạn ???????????
cho tam giác ABC cân tại A, trung tuyến BM và CN cắt nhau tại I
a)cm tứ giác BNMC là hình thang cân
b)gọi P,K lần lượt là trung điểm của BN và CM, PK cắt BM tại D cắt CN tại E .cm PD=DE=EK
Cho tam giác ABC cân tại A có 2 đường trung tuyến BM và CN. Chứng minh: Tứ giác BMNC là hình thang cân.
Làm rõ từng bước giúp mình nhé, thanks nhìu!
ΔABC cân tại A, suy ra :
Góc B = Góc C; AB=AC; Góc B = (180 độ - góc A)/2 (1)
Ta có: AM=1/2AC; AN=1/2AB
=> AM=AN(Vì AB=AC)
=> Tam giác AMN cân tại A
=> Góc AMN = (180 độ - góc A)/2 (2)
Từ (1) và (2) => Góc B = Góc AMN
=> MN//BC (Góc B; Góc AMN ở vị trí đồng vị)
=>BNMC là hình thang.
Mà: Góc B = Góc C
=> BNMC là hình thang cân