a, Rút gọn: B=\(\dfrac{4x^3+8x^2-x-2}{4x^2+4x+1}\)
b, tìm x \(\in\) Z để B \(\in\) Z
A=\(\left(\dfrac{2x-3}{4x^2-12x+5}+\dfrac{2x-8}{13x-2x^2-20}-\dfrac{3}{2x-1}\right):\dfrac{21+2x-8x^2}{4x^2+4x-3}+1\)
a) Rút gọn A và tìm TxĐ
b) Tìm x \(\in\) Z để A \(\in Z\)
a) Tìm TXĐ và Rút gọn A
b) Tìm \(x\in Z\) để \(A\in Z\)
\(A=\left(\dfrac{2x-3}{4x^2-12x+5}+\dfrac{2x-8}{13x-2x^2-20}-\dfrac{3}{2x-1}\right):\dfrac{21+2x-8x^2}{4x^2+4x-3}+1\)
Cho biểu thức B =(\(\dfrac{x^3}{x^3-4x}+\dfrac{6}{^{6-3x}}+\dfrac{1}{2+x}\)): (x+2+\(\dfrac{10-x^2}{x-2}\))
a) Rút gọn B
b) Tìm B biết x2-5x+6=0
c) Tìm x ∈ Z để B ∈ Z
d) Tìm x biết |B|>1
Cho A = \(\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+1\)
a, Rút gọn .
b, Tìm \(x\in Z\)để \(A\in Z\).
c, Tìm x để \(A\ge0\)
a. ĐKXĐ : \(x\ne\frac{1}{2};\frac{5}{2};4;-\frac{3}{2};\frac{1\pm\sqrt{43}}{2}\)
\(A=\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+\)
\(=\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}-\frac{3x-8}{\left(2x-5\right)\left(x-4\right)}-\frac{3}{2x-1}\right).\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)
\(=\frac{\left(2x-3\right)\left(x-4\right)-\left(3x-8\right)\left(2x-1\right)-3\left(2x-5\right)\left(x-4\right)}{\left(2x-1\right)\left(2x-5\right)\left(x-4\right)}.\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)
\(=\frac{-10x^2+47x-56}{\left(2x-5\right)\left(x-4\right)}.\frac{2x+3}{-2x^2+2x+21}+1\) số to wa
Bài 2: Cho biểu thức B=(\(\dfrac{3X}{2X+3}\)+\(\dfrac{4}{3-2x}\)-\(\dfrac{4x^2-23x-12}{4x^2-9}\)):(\(\dfrac{x+3}{2x+3}\) )với x khác 3/2;-3/2;-3
a) Rút gọn B
b) Tính giá trị của B biết 2x^2+7x+3=0
c) Tìm x thuộc Z để B thuộc Z
d) Tìm x để |B|<1
CỨU MÌNH CÂU d NHA MÌNH CẢM ƠN!
a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)
\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)
\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)
b: 2x^2+7x+3=0
=>(2x+3)(x+2)=0
=>x=-3/2(loại) hoặc x=-2(nhận)
Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)
d: |B|<1
=>B>-1 và B<1
=>B+1>0 và B-1<0
=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)
\(A=\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}\times\dfrac{4x^2-8x+16}{x^2-4}\right)\div\dfrac{16}{x+2}\times\dfrac{x^2+3x+2}{x^2+x+1}\)
\(B=\dfrac{x^2+x-2}{x^3-1}\)
a) Tìm ĐKXĐ của A, B. Rút gọn A, B
b)Tìm GTLN của A+B
cho biểu thức P= ( \(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\))\(:\frac{21+2x-8x^2}{4x^2+4x-3}+1\)
a/ rút gọn
b/ tìm giá trị của P khi giá trị tuyệt đối của x =1/2
c/ tìm giá trị nguyên của xđể P \(\in\)Z
d/ tìm x để P >0
Rút gọn M = \(\frac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)
Tìm \(x\in Z\) để \(M\in Z\)
bài này chỉ cần 2 hđt là xong
(x-2)3 ; x2 - 4
aRút gọn Biểu thức
b, Tìm x c Z để B c Z
B=x+2/x+3 - 5/x^2 +x-6 + 1/2-x
a,Rút gọn P
b Tìm x để P=0,P=1,P>0
P=x+3/x2+5x+6 : (8x2/4x3-8x2 - 3x/3x2-12 - 1/x+2)